• Title/Summary/Keyword: Horizontal Porous Flexible Membrane

Search Result 7, Processing Time 0.018 seconds

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • The interaction of monochromatic incident waves with a submerged horizontal porous membrane is investigated in the context of two-dimensional linear hydro-elastic theory. It is assumed that the membrane is made of material with very fine pores so that the normal velocity of the fluid passing through the porous membrane is linearly proportional to the pressure difference between two sides of the membrane (e.g. Darcy's law). Using the Eigen-function expansion method, the wave-blocking performance of a submerged horizontal porous membrane is tested with various membrane tensions, porosities, lengths, and submerged depths. It is found that an optimal combination of design parameters exists for given water depth and wave characteristics.

  • PDF

Submerged Membrane Breakwaters I: A Rahmen Type System Composed of Horizontal and Vertical Membranes

  • Kee, Sung-Tae
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 2002
  • In the present paper, the hydrodynamic properties of a Rahmen-type, flexible, porous breakwater interacting with obliquely or normal- incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes, hinged at the side edges of a submerged horizontal membrane. The dual vertical membranes are extended downward and hinged at seabed. The effects of permeability, Rahmen-type membrane breakwater geometry, pre-tensions on membranes, relative dimensionless wave number, and incident wave headings are thoroughly examined.

  • PDF

Submerged Horizontal and Vertical Membrane Wave Barrier

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.1-11
    • /
    • 2005
  • In the present paper, the hydrodynamic properties of a Rahmen type flexible porous breakwater with dual fixed pontoon system interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at the side edges of dual fixed pontoons, and a submerged horizontal membrane that both ends are hinged at the steel frames mounted pontoons. The dual vertical membranes are extended downward and hinged at bottom steal frame fixed into seabed. The wave blocking and dissipation mechanism and its effects of permeability, Rahmen type membrane and pontoon geometry, pretensions on membranes, relative dimensionless wave number, and incident wave headings are thoroughly examined.

INTERACTIONS OF A HORIZONTAL FLEXIBLE MEMBRANE WITH OBLIQUE INCIDENT WAVES

  • I.H. Cho;S.W. Hong;Kim, M.H.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • The interaction of oblique monochromatic incident waves with a horizontal flexible membrane is investigated in the context of two-dimensional linear hydro-elastic theory. First, analytic diffraction and radiation solutions for a submerged impermeable horizontal membrane are obtained. Second, the theoretical prediction was compared with a series of experiments conducted in a two-dimensional wave tank at Texas A&M University. The measured reflection and transmission coefficients reasonably follow the trend of predicted values. Using the developed computer program, the performance of surface-mounted or submerged horizontal membrane wave barriers is tested with various system parameters and wave characteristics. It is found that the properly designed horizontal flexible membrane can be an effective wave barrier and its efficiency can be further improved using a porous material.

  • PDF

Submerged Membrane Breakwaters I: A Rahmen Type System Composed of Horizontal and Vertical Membranes (수중 유연막 방파제 I : 수평-수직 유연막으로 구성된 라멘형 시스템)

  • 기성태
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2002
  • in the present paper, the hydrodynamics properties of a Rahmen type flexible porous breakwater interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at th side edges of a submerged horizontal membrane. The dual vertical membranes are extended downward and hinged at seabed. The effects of permeability, Rahmen type membrane breakwater geometry pre-tensions on membranes, relative dimensionless wave number, and incident Wave headings are thoroughly examined.

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • 본 논문에서는 투과성 유연막이 수면밑 일정한 깊이에 수평으로 잠겨있을 때 투과성 유연막에 의한 파랑제어성능을 살펴보았다. 해석 방법으로는 유체문제는 고유함수전개법 (Eigenfunction expansion method)을 사용하였고, 유연막과 파랑의 상호작용문제는 Newmann 이 제시한 유탄성 이론 (hydro-elastic theory)을 채택하였다. 막의 투과성 효과를 고려하기 위하여 수평막에서의 수직속도는 수평막 상하의 압력차에 선형적으로 비례하며 그들 사이에는 위상차가 없다고 가정한 Darcy 법칙을 사용하였다. 투과성 수평막의 설계변수 (초기장력, 길이, 잠긴 깊이, 공극율)와 입사파의 주파수를 바꿔가면서 반사율과 투과율 그리고 에너지 손실율을 살펴보았다.

Submerged Membrane Beakwaters II: A Rahmen Type System Composed of Horizontal and Vertical Membranes

  • Kee S.T.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2004.08a
    • /
    • pp.150-159
    • /
    • 2004
  • In the present paper, the hydrodynamics properties of a Rahmen type flexible porous breakwater with dual fixed-pontoon system interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged a the side edges of dual fixed pontoons, and a submerged horizontal membrane that both ends are hinged at the steel frames mounted pontoons. The dual vertical membranes are extended downward and hinged at bottom steal frame fixed into seabed. The wave blocking and dissipation mechanism and its effects of permeability, Rahmen type membrane and pontoon geometry, pre-tensions on membranes, relative dimensionless wave number, and incident wave headings are thoroughly examined.

  • PDF