• Title/Summary/Keyword: Horizontal Curve

Search Result 309, Processing Time 0.025 seconds

Development of Estimation of Curve Radii of Road Considering Design Consistency (설계일관성을 고려한 도로 곡선반경 산정에 관한 연구)

  • Park, Je-Jin;Lee, Sang-Ha;Park, Kwang-Won;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • Achieving consistent geometric design is an important goal in highway design to ensure obtaining safe, economical and smooth traffic operation. Most evaluation of consistency is based on 'speed change' in speed profile. According to literature, the speed depends on geometric elements, speed on tangent section prior to a curve, and background around roads. Especially, the radius is the most main element mentioned in various literature. Therefore, this paper shows two ways of calculating horizontal radius on real road, that is, three-dimensional road. First of all, the radius of horizontal curve is calculated based on physical method. The calculated radius contains not only superelevation but also longitudinal grade while the current minimum radius is calculated by considering superelevation and side friction according to the point-mass equation. Secondly, the problem of composed curves with distorted appearance by overlaying sag or crest vertical alignment has been known. To quantify the extent of distortion effects, the method of calculation of real seen so called 'Perspective Radius' is developed. The paper presents the perspective radius and recommended perspective radius.

  • PDF

Estimation Desirable Safety Speed based on Driving Condition on Rural Highways (도로환경특성을 고려한 안전속도 산정에 관한 연구)

  • Kim, Keun-Hyuk;Lim, Joon-Beom;Lee, Soo-Beom;Kang, Dong-Soo;Hong, Ji-Yeon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.149-162
    • /
    • 2012
  • PURPOSES : The causes of traffic accidents can be classified into the factors of highway users, vehicles, and driving environments. Traffic accidents result from the deficiency in single or combination of these three factors. The objective of this study is to define the "potentially hazardous sections of highway" in terms of traffic safety considering these three factors. METHODS : The test drivers performed repeated driving on these highway sections. The drivers and passengers recorded the sections on which the driving was uncomfortable, and the speeds on the sections excluding the uncomfortable sections were used for the development of the model. RESULTS : The model is composed of three sub-models for each of the horizontal curve, tangent, and the section where the curve starts/ends. The safe driving behavior coefficients by the horizontal curvature were derived by comparing the maximum operating speeds at which the vehicle may slide or deviate and the speeds at which the drivers feel comfort. The safety speeds on tangent were derived by the length of tangent section considering the driver's desired speeds under the traffic condition on which the drivers hardly influenced by the other vehicles. For the sections where the curve starts/ends, the driving behaviors were classified by the distances between the curves, and the safe acceleration/deceleration speeds were derived on which the drivers enter/exit the curve sections safely. CONCLUSIONS : Safety speed could then be regarded that the model suggested in this study may be useful to define the potentially hazardous highway section and contribute the improvement of highway safety.

RSSI-Based Indoor Localization Method Using Virtually Overlapped Visible Light (가상 가시광 중첩을 이용한 RSSI 기반의 실내 측위법)

  • Kim, Dae Young;Yi, Keon Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1697-1703
    • /
    • 2014
  • In this paper, we propose an indoor RSSI (received signal strength indication)-based localization method that uses virtually overlapped visible light with an indoor LED lighting system. In our system, a photodiode (PD) measures the RSSI from LED lamps that blink in one row or column units. Subsequently, the RSSI is used to obtain the horizontal distances between the LED lamps and the receiver with the predetermined characteristics curve, R-D curve, that represents the relation between the RSSI and the horizontal distances. When the controlled LED lamps blink in one row or column units, the R-D curve at the border of the LED lamps is different because of the weak lighting, which results in the position sensing error of the receiver. The deviation of the optical power of each LED also causes the error. To solve these problems, we propose a method that overlaps the visible light through the numerical operation at the receiver side without any modification of the light source side. Our proposed method has been simulated in a room measuring $1.2{\times}1.2{\times}1.8m^3$ considering the effect of the error on the optical power of the LED. The simulation result shows that the proposed method eliminates the error condition with the R-D curve and achieves an average positioning error of 13.4 mm under the error rate 3% of the optical power.

A CONFUTER ANALYSIS ON THE ARTICULAR EMINENCE AND THE CONDYLAR PATH OF THE EDENTULUS PATIENT IN MANDIBULAR PROTRUSIVE MOVEMENT (무치악자의 하악전방운동시 관절융기와 과두운동로에 관한 컴퓨터 분석)

  • Lee Yeoun-Soo;Park Nam-Soo;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.321-337
    • /
    • 1992
  • The objective of this study was to compare the condylar path and the anterior angle of articular fossa and to analyze the pattern of condylar path in edentulus patients. Nineteen male and female edentulous patients with normal masticatory system ranging in age 42 to 78, without present symptoms and any history of TMJ disturbance were selected for this study. On the computer analysis on the transcranial radiographs of the TMJ, the angle of slope of articular eminance and condylar path to the Frankfort Horizontal Plane and the height of glenoid fossa was measured respectively, and stuied their interrelationship comparatively. Obtained results were asfollows. 1. The angle of the slope of articular eminence averaged 37.28 degree. and there was no significant difference between the right and left side. 2. The condylar path angle averaged 29.05 degree and there was no significant difference between the right and left side. 3. The height of the glenoid fossa averaged 8.11 mm and there was no significant difference between the right and left side. 4. The sequence of the frequence of condylar movement patterns were concavex curve(39.5% ), 'S' shape curve(34.2%), reverse 'S' shape(15.8%) and convex curve(10.5%). 5. The horizontal distance of the point of the changed curve of the condylar path averaged 2.91 mm. 6. The height of glenoid fossa was highly correlated to the slope of articular eminence and relatively highly correlated to tile condylar path and the condylar path was closely correlated to the slop of articular eminence.

  • PDF

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

Characteristics and Modeling of Operating Speed at Horizontal Curves on Rural Four-Lane Highways (국도 4차로 곡선부에서 주행속도의 특성 및 모형)

  • 고종대;장명순;정준화
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.95-105
    • /
    • 2002
  • Under a specific roadway alignment condition by design-speed standards, safety of the roadway is determined by an actual operating speed of a driver. This research takes first lanes of four-lane(hi-direction) rural highways as target facility. It also takes the straight and curved lanes of the selected highways for in-depth study. This study used NC-97 to detect speeds of passenger cars whose speeds are not affected by front vehicles. This research analyzed properties of 85th percentile operating speed at upstream of horizontal and through curves under various alignment conditions. The results show that 53∼65 Percent of drivers drive faster than the posted speed-limit (80KPH) by 14∼20 KPH on average. It also shows that the 85th-percentile operating speeds are the lowest at the middle point of curve length when curve radius is smaller. However, they are lowest at 1/4 point of curve length when curve radius is greater. Along roadways where curve radius is small, difference between upstream speed and the speed along the curve is considerably large. On the other hand. the speed difference is setting smaller as the curve radius is increasing. According to the results, significant variables affecting the 85th percentile operating speeds are curve radius and the 85th-Percentile operating speeds of upstream curves.

Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine (500kW급 수평축 조류발전기의 수력 최적 설계)

  • Ryu, Ki-Wahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

Demagnetization Performance According to Vertical and Horizontal Magnetic Bias Fields

  • Kim, Young-Hak;Kim, Ki-Chan;Shin, Kwang-Ho;Yoon, Kwan-Seob;Yang, Chang-Seob
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.453-456
    • /
    • 2011
  • Demagnetization for a tube sample which was made of a galvanized steel sheet was performed by applying a magnetic field with a decrement to remove the remanent magnetization of the material. An orthogonal fluxgate magnetic field sensor was used to measure a magnetic field created from a ferromagnetic material. To evaluate the remanent magnetization, the measured magnetic fields were separated into two magnetic field components by the remnant magnetization and the induced one. The horizontal and the vertical bias fields should be controlled separately during demagnetization to remove the horizontal and the vertical components of the remanent magnetization of the tube sample.

Development of Korean Standard Horizontal Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records (국내외 판내부 지진기록을 이용한 한국 표준수평설계스펙트럼의 개발)

  • Kim, Jae Kwan;Kim, Jung Han;Lee, Jin Ho;Heo, Tae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.369-378
    • /
    • 2016
  • The design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. The horizontal spectrum is defined as geometric mean spectrum, GMRotI50. From the statistical analysis of the geometric mean spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.