• Title/Summary/Keyword: Horizontal Axis Tidal Turbine

Search Result 45, Processing Time 0.02 seconds

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Experimental Study on Interaction Effect of Darrieus Tidal Stream Turbines (다리우스 조류 터빈의 상호작용 효과에 대한 실험적 연구)

  • Kim, Jihoon;Park, Jin-Soon;Ko, Jin Hwan
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.193-202
    • /
    • 2019
  • There have been various approaches for efficiency improvement of a Darrieus tidal stream turbine after it was introduced as an alternative of horizontal axis turbines. Among the approaches, the researches on the interaction effect of dual configuration were conducted. In this study, a dual Darrieus turbine with a coupling mechanism was proposed for investigating the interaction effect. Also, the effect of bi-directional tidal stream was analyzed with prototype fabrication, apparatus set-up and experiment conduction in indoor and offshore facilities. As the results of the experiments, the dual turbine in case of counter-rotation and inflow between the turbines improved efficiencies by 9.5% and 11.31%, respectively, as compared to the single turbine. Also, the dual turbine in case of the inflow improved efficiencies by 9.4% and 16.62%, respectively, as compared to that in case of outflow between the turbines which represented the case of 180 degrees change of flow direction after slack water. Therefore, the proposed dual turbine showed the advantage in terms of the efficiency as compared to the single turbine and the effect level of the slack water on the performance of the dual turbine was investigated.

Performance of a Horizontal-axis Turbine Based on the Direction of Current Flow (수평축 조류발전 로터의 유향변화에 따른 효율 고찰)

  • Jo, Chul-Hee;Park, Ro-Sik;Yim, Jin-Young;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The use of a tidal-current power system is one source of renewable energy that can minimize the environmental impact of power production and offer many other advantages compared to conventional energy sources. Unlike other energy production approaches, rate of energy production can be precisely predicted and the operational rate is very high. The performance of the rotor, which has a vital role in energy production using tidal currents, is determined by various design factors, and it should be optimized for the specific ocean environment in the field. The horizontal-axis turbine is very sensitive to the direction of flow, and flow direction changes due to rise and fall of the tides. To investigate the performance of the rotor considering the interaction problems with incidence angle of flow, a series of experiments were conducted, and a 3D CFD model was designed and analyzed by ANSYS CFX. The results and findings are summarized in the paper.

Critical Limits of Commercial Diving on the Construction of Tidal Current Power in Jangjuk Channel (장죽수로 조류발전건설시 작업특성에 따른 산업잠수 작업한계)

  • Kim, Won-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.733-742
    • /
    • 2013
  • The Korea has significant tidal current energy resources, but it is so hard to work underwater for tidal turbine installation. Therefore commercial diving work is very important for tidal current generator. Also, Jangjuk channel is vary famous as proper area to generate tidal current energy. Nevertheless, no one is studied about characteristics of commercial diving works with installation of tidal current generator. The purpose of this study is to introduce commercial diving with work types and investigate critical limits of diving working under the conditions, which are working only to minutes at slack tide during the neap tide. As the results, work types are five as like mooring installation, OMAS(Offshore Maintenance Access System), support structure installation, cable and turbine installation. Here, the original construction period is expected about 4 months, but the construction take 18 months to complete. The cause of extends construction period is insufficiency of researching tidal current conditions at the site and ignorance of slack tide which need to secure diving working time. Total diving working times are 110th during 18 months, the highest percentage of diving times is turbine installation about 43.6 %, and cable, mooring installation and support structure construction are 27.3 %, 15.5 %, 13.6 %, respectively. On the basis of this study, estimation of times of commercial diving is possible with work types of tidal current power, and has a significance as basic data to determining construction period.

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

Performance and Cavitation Analysis on Tidal Current Turbine for Low Water Level Channel

  • Chen, Chengcheng;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.60-66
    • /
    • 2014
  • Most tidal current turbine designs are focused on medium and large scale for deep sea, less attention is paid in low water level channel, such as the region around the islands and costal sea. This study is to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest coastal region of Korea. In this study, the hydrofoil NACA63-415 and NACA63-817 are both adopted to analyze. The blade using NACA63-817 showed the higher maximum power coefficient and good performance at small TSR (Tip Speed Ratio), which gives the blade more advantages in operating at lower water level channel, where is characterized by the fast-flowing water. The cavitation pattern of hydrofoil is predicted by the CFD analysis and verified that the NACA63-817 is the appropriate hydrofoil in the test site of tidal current resource and the hydrofoil showed considerable performance in avoiding cavitation.

Preliminary Design and Performance Analysis of Ducted Tidal Turbine

  • Jo, Chul-Hee;Lee, Kang-Hee;Kim, Do-Youb;Goo, Chan-Hoe
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.176-185
    • /
    • 2015
  • Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Tidal current power, one of the ocean energy resources, has great potential worldwide due to its high energy density. The flow velocity is the most crucial factor for the power estimation of TCP(Tidal Current Power) system since the kinetic energy of the flow is proportional to the cube of the flow speed. So sufficient inflow speed to generate electricity from the tidal current power is necessary. A duct system can accelerate the flow velocity, which could expand the applicable area of TCP systems to relatively lower velocity sites. The shapes of the inlet and outlet could affect the flow rate inside the duct. To investigate the performance of the duct, various ducts were preliminary designed considering the entire system that is single-point moored TCP system and a series of simulations were carried out using ANSYS-CFX v13.0 CFD software. This study introduces a ducted turbine system that can be moored to a seabed. A performance estimation and comparison of results with conventional tidal converters were summarized in this paper.

Numerical Analysis of HAT Tidal Current Rotors (수평축 조류발전로터 성능실험의 수치적 재현과 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.620-623
    • /
    • 2009
  • 여러 해양에너지 중 유체의 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경의 영향을 최소화 하면서 많은 에너지를 연속적으로 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 조류발전시스템의 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 블래이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 로터를 설계하며, 설계정보와 실험데이터를 바탕으로 수치모델을 구현하여 실험에서 직접 계측할 수 없는 로터 주변의 유체현상 및 간섭영향 등을 예측할 수 있다. 본 논문에서는 변화하는 유속에 따른 HAT 로터의 시동속도, 회전수를 측정하여 로터 형상과 허브-직경비가 다른 로터의 성능을 고찰하고, 이를 수치모델로 구현하여 로터주변 유동변화를 연구하였다.

  • PDF

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.