• Title/Summary/Keyword: Horizontal Axis

Search Result 680, Processing Time 0.029 seconds

Growth and Characterization of CuGaTe$_2$ Sing1e Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE) 방법에 의한 CuGaTe$_2$ 단결정 박막 성장과 특성)

  • 유상하;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.273-280
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the CuGaTe$_2$ single crystal thin films was prepared from horizontal furnance. For extrapolation method of X-ray diffraction patterns for the CuGaTe$_2$ polycrystal, it was found tetragonal structure whose lattice constant a$\_$0/ and c$\_$0/ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaTe$_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 670 $^{\circ}C$ and 410 $^{\circ}C$ respective1y, and the thickness of the single crystal thin films is 2.1 $\mu\textrm{m}$. The crystalline structure of single crystalthin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of CuGaTe$_2$ single crystal thin films deduced from Hall data are 8.72${\times}$10$\^$23/㎥, 3.42${\times}$10$\^$-2/㎡/V$.$s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the CuGaTe$_2$ single crystal thin film, we have found that the values of spin orbit coupling Δs.o and the crystal field splitting Δcr were 0.0791 eV and 0/2463eV at 10K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0490eV, 0.00558eV, respectively.

  • PDF

Growth and Optoelectrical Properties for $AgGaSe_2$ Single Crystal Thin Films ($AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.171-174
    • /
    • 2004
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of $AgGaSe_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89{\times}10^{17}\;cm^{-3},\;129cm^2/V{\cdot}s$ at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $AgGaSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}S_o$ and the crystal field splitting ${\Delta}C_r$ were 0.1762 eV and 0.2494 eV at 10 K, respectively. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition $(E_X)$ observable only in high quality crystal and neutral bound exciton $(D^o,X)$ having very strong peak intensity And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Growth and Optoelectrical Properties for $CuInS_2$ Single Crystal Thin Film ($CuInS_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.230-233
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuInS_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuInS_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.524\;{\AA}$ and $11.142\;{\AA}$, respectively. To obtain the single crystal thin films, $CuInS_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperature were 640 t and 430 t, respectively and the thickness of the single crystal thin films was $2{\mu}m$. Hall effect on this sample was measured by the method of van dot Pauw and studied on carrier density and temperature dependence of mobility. The carrier density and mobility deduced from Hall data are $9.64{\times}10^{22}/m^3,\;2.95{\times}10^{-2}\;m^2/V{\cdot}s$ at 293 K, respectively The optical energy gaps were found to be 1.53 eV at room temperature. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the thin film, we have found that the values of spin orbit coupling splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0211 eV and 0.0045 eV at 10 K, respectively. From PL peaks measured at 10K, 807.7nm (1.5350ev) mean Ex peak of the free exciton emission, also 810.3nm (1.5301eV) expresses $I_2$ peak of donor-bound exciton emission and 815.6nm (1.5201eV) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 862.0nm (1.4383eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

Experimental Study on the Static Behavior of the Spliced PSC Box Girder (분절 PSC 박스거더의 정적거동에 관한 실험적 연구)

  • Chung, Won-Seok;Kim, Jae-Hueng;Chung, Dae-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2007
  • The main objective of the paper is to investigate the static behavior of a prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced PSC girder is fabricated and tested to compare its static performance against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. This includes infernal strain, deflections, neutral axis position, and crack patterns for both girders. The test also consists of monitoring relative displacements occurring across the joints. Both the horizontal displacement (gap) and vertical displacement (sliding) are measured throughout the loading procedure. All results have been compared to those obtained from the monolithic girder. It has been demonstrated that the spliced girder offers close behavior with respect to the monolithic girder up to the crack load. Both girders exhibits ductile flexural failure rather than abrupt shear failure at joints.

A Study on Optimmal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems (2 MW급 대형 수평축 풍력발전시스템을 위한 필라멘트 와인딩 복합재 타워의 최적설계에 관한 연구)

  • Lim, Sung-Jin;Kong, Chang-Duk;Park, Hyun-Bum
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, a specific structural design procedure for 2 MW class glass/epoxy composite wind turbine system towers is newly proposed through load case study, trade-off study, optimal structural design and structural analysis. Optimal tower design is very important because its cost is about 20% of the wind turbine system's cost. In the structural design of the tower, three kinds of loads such as wind load, blades, nacelle and tower weight and blade aerodynamic drag load should be considered. Initial structural design is carried out using the netting rule and the rule of mixture. Then the structural safety and stability are confirmed using a commercial finite element code, MSC NASTRAN/PATRAN. The finally proposed tower configuration meets the tower design requirements.

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.

Aerodynamic and Structural Design for Medium Size Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전 날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;방조혁;오동우;김기범;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Nowadays, non-pollution energy sources have been strongly needed because of the exhaustion of fossil fuels and serious environmental problems. Because wind energy can be enormously obtained from natural atmosphere, this type of energy has lots of advantages in a economic and pollution point of view. This study has established the aerodynamic and structural design procedure of the rotor blade with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The aerodynamic configuration of the rotor blade was determined by considering the wind condition in the typical local operation region, and based on this configuration aerodynamic performance analysis was performed. The rotor blade has the shell-spar structure based on glass/epoxy composite material and is composed of shank including metal joint parts and blade. Structural design was done by the developed design program in this study and structural analysis, for instance stress analysis, mode analysis and fatigue life estimation, was performed by the finite element method. As a result, a medium scale wind turbine rotor blade with starting characteristics of 4m/s wind speed, rated power of 500㎾ at 12m/s wind speed and over 20 years fatigue life has been designed.

  • PDF

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.

Passenger Ship Evacuation Simulation Considering External Forces due to the Inclination of Damaged Ship (손상 선박의 자세를 고려한 여객선 승객 탈출 시뮬레이션)

  • Ha, Sol;Cho, Yoon-Ok;Ku, Namkug;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • This paper presents a simulation for passenger ship evacuation considering the inclination of a ship. In order to describe a passenger's behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. To calculate inclined angle of damaged ship, static equilibrium equations of damaged ship are derived using "added weight method". Using these equations, physical external forces due to the inclination of a ship act on the body of each passenger. The crowd behavior of the passenger is considered as the flock behavior, a form of collective behavior of a large number of interacting passengers with a common group objective. Passengers can also avoid an obstacle due to penalty forces acting on their body. With the passenger model and forces acting on its body, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of ship's inclination on the evacuation time are confirmed.