• 제목/요약/키워드: Hopfield

검색결과 185건 처리시간 0.029초

전자상거래를 위한 Item Dependency Map 기반 개인화된 추천기법 (Personalized Recommendation based on Item Dependency Map)

  • 염선희;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.475-477
    • /
    • 2001
  • 본 논문은 사용자의 구매 패턴을 찾아서 사용자가 원하는 상품을 추천하는 알고리즘을 제안하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B 상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트웍(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트웍에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.

  • PDF

배전계통계획의 최소비용 경로탐색을 위한 신경회로망의 구현 (Implementation of Neural Network for Cost Minimum Routing of Distribution System Planning)

  • 최남진;김병섭;채명석;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.232-235
    • /
    • 1999
  • This paper presents a HNN(Hopfield Neural Network) model to solve the ORP(Optimal Routing Problem) in DSP(Distribution System Planning). This problem is generally formulated as a combinatorial optimization problem with various equality and inequality constraints. Precedent study[3] considered only fixed cert, but in this paper, we proposed the capability of optimization by fixed cost and variable cost. And suggested the corrected formulation of energy function for improving the characteristics of convergence. The proposed algorithm has been evaluated through the sample distribution planning problem and the simmulation results are presented.

  • PDF

패턴 인식을 위한 진화 셀룰라 분류기 (Evolvable Cellular Classifiers for pattern Recognition)

  • 주재호;신윤철;강훈
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.379-389
    • /
    • 2000
  • A cellular automaton is well-known for self-organizing and dynamic behavions in the filed of artifial life. This paper addresses a new neuronic architecture called an evolvable celluar classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programming, but its mechanism is simpler becaise it utilizes only mutations for the main genetic operators and resmbles the Hopfield network. Therefore, the desirable bit-patterns could be obtained through evolutionary processes for just one individual agent, As a rusult, an evolvable hardware is derived which is applicable to clessification of bit-string information.

  • PDF

패턴 인식을 위한 진화 셀룰라 분류기 (Evolvable Cellular Classifiers for Pattern Recognition)

  • Ju, Jae-ho;Shin, Yoon-cheol;Hoon Kang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.236-240
    • /
    • 2000
  • A cellular automaton is well-known for self-organizing and dynamic behaviors in the field of artificial life. This paper addresses a new neuronic architecture called an evolvable cellular classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programing, but its mechanism is simpler because it utilizes only mutations for the main genetic operators and resembles the Hopfield network. Therefore, the desirable hi t-patterns could be obtained through evolutionary processes for just one individual agent. As a result, an evolvable hardware is derived which is applicable to classification of bit-string information.

  • PDF

퍼지 이진화 방법과 홉필드 네트워크를 이용한 손상된 이진 영상 복원 (Reconstruction of Partially Damaged Binary Images by Using Fuzzy Binaarization and Hopfield Network)

  • 김지연;정인성;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.470-473
    • /
    • 2016
  • 본 논문에서는 영상에서 일부 정보가 손실 또는 손상된 경우에 대해서 홉필드 네트워크를 적용하여 영상을 복원하는 방법을 제안한다. 제안된 방법은 영상을 그레이 영상으로 변환한 후, 퍼지 이진화 기법을 적용하여 영상을 이진화한다. 이진화된 영상에 홉필드 네트워크를 적용하여 영상의 특징들을 학습한다. 따라서 영상의 일부 정보가 손실되거나 잡음이 있는 영상에서 퍼지 이진화 기법을 적용하여 이진화한 후, 이진화된 결과를 홉필드 네트워크에 적용하여 영상을 복원한다. 제안된 방법을 5장의 그레이 영상을 대상으로 실험한 결과, 퍼지 이진화 기법과 홉필드 네트워크를 적용한 방법이 잡음이 있거나 영상의 정보가 손실된 영상에서 복원 정도가 높은 것을 실험을 통하여 확인하였다.

  • PDF

무선 LAN에서 다중 Access Point 위치의 최적화 설계 (The Optimization Design of Multiple Access Point placement for wireless LAN)

  • 임국찬;강훈;최성훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.371-374
    • /
    • 2002
  • The optimal AP placement for wireless LAN is important factor for improving service quality and reducing cost. Logical area property, which is user's frequently posed place, must be considerated for flexible design. This paper proposes optimal multiple AP placement method based on path loss model which is one of radio prediction tool. The proposed method can got flexibility in multiple AP placement using user's defined parameter and tile optimization design uses Hopfield network algorithm The result of simulation shows that the proposed optimization design of multiple AP placement can improve service quality for wireless LAN.

  • PDF

최적화용 신경망의 성능개선을 위한 새로운 최적화 기법 (A new optimization method for improving the performance of neural networks for optimization)

  • 조영현
    • 전자공학회논문지C
    • /
    • 제34C권12호
    • /
    • pp.61-69
    • /
    • 1997
  • This paper proposes a new method for improving the performances of the neural network for optimization using a hyubrid of gradient descent method and dynamic tunneling system. The update rule of gradient descent method, which has the fast convergence characteristic, is applied for high-speed optimization. The update rule of dynamic tunneling system, which is the deterministic method with a tunneling phenomenon, is applied for global optimization. Having converged to the for escaping the local minima by applying the dynamic tunneling system. The proposed method has been applied to the travelling salesman problems and the optimal task partition problems to evaluate to that of hopfield model using the update rule of gradient descent method.

  • PDF

홉필드 신경망을 이용한 젤 매치 (Gel Matching using Hopfield Neural Network)

  • 황영섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.513-516
    • /
    • 2004
  • 젤 영상에서 스팟을 탐지한 후, 스팟 사이의 일치 여부를 판단하여 새로운 단백질의 생성되었는지 없어진 단백질이 있는지 알아내게 된다. 젤 영상은 만들어지는 과정에서 같은 단백질이라도 스팟의 위치가 조금씩 다르게 된다. 스팟 사이의 관계는 비선형 변환에 해당하고, 각 스팟 사이의 매치는 NP 문제임이 증명되었고, 이를 해결하기 위한 휴리스틱 방법이 보고되었다. 최적화에 좋은 성능을 보이고 있는 홉필드 신경회로망을 젤 매치에 적용하는 방법을 연구하였다. 홉필드 신경망의 각 뉴런은 뉴런이 대표하는 두 스팟이 일치할 때 활성화되고, 일치하지 않을 때 활성화되지 않도록 하였다. 각 뉴런의 상태를 전체 에너지가 줄어드는 방향으로 변경하면 결국 안정된 상태에 도달하게 되고, 이 때 각 뉴런은 가능한 매치를 표현하게 된다.

  • PDF

신경회로망을 이용한 변전소 모선분리 방안 연구 (Application of Neural Networks to the Bus Separation in a Substation)

  • 이광호;황석영;추진부;윤용범;전동훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.757-759
    • /
    • 1996
  • This paper proposes an application of artificial neural networks to the bus-bar separation in a substation for radial network operation. For the effective bus-bar operation, the insecurity index of transmission line load is introduced. For the radial network operation. the constraints of bus-bar switch is formulated in the performance function with the insecurity index. The determination of bus-bar switching is to find the states of 0 or 1 in the circuit breakers. In this paper, it is tested that the bus-bar separation of binary optimization problem can be solved by Hopfield networks with adequate manipulations.

  • PDF

선형계획 문제의 해를 구하는 신경회로 (Neural Networks for Solving Linear Programming Problems and Linear Systems)

  • 장석호;강성귀;남부희;이정문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.221-223
    • /
    • 1993
  • The Hopfield model is defined as an adaptive dynamic system. In this paper we propose a modified neural network which is capable of solving linear programming problems and a set of linear equations. The model is directly implemented from the given system, and solves the problem without calculating the inverse of the matrices. We get the better stability results by the addition of scaling property and by using the nonlinearities in the linear programming neural networks.

  • PDF