• 제목/요약/키워드: Hooke-Jeeves algorithm

검색결과 17건 처리시간 0.019초

홍수 사상에 대한 소유역 강우-유출 모형 개발 (The Development of an Event Rainfall-Runoff Model in Small Watersheds)

  • 이상호;이길성
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.145-158
    • /
    • 1994
  • 소유역 강우-유출모형으로서 유출함수법을 대폭 개선한 선형저수지 강우-유출 체계를 수립하였다. 매개변수의 수는 6개이고 수문학적 손실은 일정량의 초기손실과 일정비의 후기손실로 계산하며 추적식은 해석적으로 유도하였다. 변수추정은 Hooke and Jeees 방법에 의한 자동추정법을 사용하였다. 이를 서면과 문막 수위표의 '84∼'89년 홍수에 적용하여 모형을 검증하였다. 매개변수중 초기손실은 선행강우의 영향을 받으나 이를 고려하지 않았으므로 이에 대한 연구가 필요하고 실시간 예측시 주요 매개변수를 선택하는 방법도 보완되어야 한다.

최소 응력을 갖는 필렛의 형상설계 (Optimal Shape of Fillet for Minimum Stress)

  • 김호룡;이장용
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.149-161
    • /
    • 1990
  • In this study, an optimal shape design was performed on a fillet model which is subject to surface traction through minimizing the maximum stress of the fillet. A 2-dimensional quadratic isoparametirc element with 8 nodes was used in stress analysis for finite element method, and Hooke-Jeeves direct search algorithm was adopted for optimi- zation. From the resulting optimal shape, it was found that the maxium von Mises stress on the boundary of fillet was reduced by 36%, compared to other paper in which the cross sectional area of fillet was minimized. In conclusion, a real optimal fillet shape could be obtained in the viewpoint of yielding, and more pratical fillet design could be accomplished.

  • PDF

기계화(機械化) 영농단(營農團)의 규모별 적정기종(適正機種) 선정 연구 (Selection of Optimal Machinery Systems by the Sizes of the Mechanized Farming Group)

  • 장동일;김성래;정두호
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.244-256
    • /
    • 1990
  • 본 연구는 기계화(機械化) 영농단(營農團)의 조직, 농기계(農機械) 보유(保有) 및 이용(利用), 경지규모 등을 조사분석하고, 농기계(農機械) 이용비용(利用費用), 작업시간, 소요 노동력 등을 산출할 수 있는 수학적(數學的) 모델을 개발한 후, NGP를 이용하여 기계화 영농단의 규모별 적정(適正) 농기계(農機械)의 기종(機種) 및 태수(台數)를 결정하고자 수행되었다. 이를 위하여 충남지방의 50개의 기계화 영농단에 대하여 조사표에 의한 조사분석을 실시하고, 시스템분석을 통하여 수학적(數學的) 모델과 컴퓨터 프로그램의 개발에 필요한 각종 자료를 준비한 후, 컴퓨터 프로그램 MFSDlNGP를 개발한 후, 이것을 이용하여 기계화(機械化) 영농단(營農團)의 5ha규모에서부터 40ha까지 9개 수준의 규모에 대하여 적정(適正) 농기계(農機械)를 선정하였으며 그 결과는 표(表)8과 같다. 적정기종(適正機種) 선정결과(選定結果) 다음과 같은 결론을 얻을 수 있었다. (1) 기계화영농단의 규모 5~40ha 범위에서 적정농기계(適正農機械) 선정에 따른 年間利用費用(연간이용비용)은 1,444~37,663천원/yr와 289~942천원/ha-yr로 분석되었다. (2) 기계화영농단의 규모 20ha에서 부터는 농기계(農機械) 이용비용(利用費用)이 급격히 증가하는 것으로 분석되어 대규모(大規模) 기계화(機械化) 영농단(營農團)을 위한 적합기종(適合機種)의 개발이 필요한 것으로 나타났다.

  • PDF

사무소건물 태양열급탕시스템의 LCC 최적화 시뮬레이션 (Optimizing the Life Cycle Cost of a Solar Water Heating System in an Office Building Through Simulation)

  • 고명진;최두성;장재동;김용식
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.859-866
    • /
    • 2010
  • This study examined the economics of a solar water heating system for an office building using life cycle cost (LCC) optimization simulations. The numerical simulations were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm. The solar collector area, slope, mass flow rate per collector area and storage tank volume were selected as the main design parameters of the solar water heating system. The LCC optimization simulations of the system were carried out for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the collector area could be decreased by 17% and 28%, storage tank volume could be decreased by 49% and 54%, and mass flow rate per collector area increased by 5% and 9% respectively compared to a non-optimized system. The LCC of the system was reduced by 4% for $60^{\circ}C$ and 7% for $50^{\circ}C$. The initial installation cost of the system was reduced by 24% for $60^{\circ}C$ and 34% for $50^{\circ}C$. However, the operating cost of the system increased by 16% for $60^{\circ}C$ and 36% for $50^{\circ}C$ compared to a traditional solar water heating system.

선체변형을 고려한 탄성 축계정렬 설계 프로그램 개발 (Development of Elastic Shaft Alignment Design Program)

  • 정준모;최익흥
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.512-520
    • /
    • 2006
  • The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.

사무소 건물 태양열급탕시스템의 LCC 최적화에 따른 에너지성능 변화 분석 (Energy Performance Variation of Solar Water Heating System by LCC Optimization in an Office Building)

  • 고명진;최두성;장재동;김용식
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.89-98
    • /
    • 2011
  • This study examined the energy performance according to the main design parameters of a solar water heating system for an office building using the life cycle cost (LCC) optimization simulations. The LCC optimization simulations of the system were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the global radiation incident on the collector could be decreased by 16.98% and 28.52%, collector useful energy gain could be decreased by 15.04% and 22.59%, energy to load from storage tank could be decreased by 10.86% and 18.06% and AH energy to load could be increased by 16.86% and 38.50% respectively compared to a non-optimized system. The annual average collection efficiency of the collector was increased by 0.88% for $60^{\circ}C$ and 2.78% for $50^{\circ}C$ because of increase of collector slope and decrease of the mass flow rate per collector area. The annual average efficiency of the system was increased by 1.74% and 3.47% compared to the basis system. However, the annual solar fraction of the system was decreased by 6.68% for $60^{\circ}C$ and 11.26% for $50^{\circ}C$ due to decrease of collector area and storage tank volume.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF