• 제목/요약/키워드: Honeycomb cells

검색결과 23건 처리시간 0.025초

The Effect of Shape of Core Cell on Shock Absorption Characteristics of Biomimetically Inspired Honeycomb Structures

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.103-108
    • /
    • 2011
  • The effect of the core cell shape on shock absorption characteristics of biomimetically inspired honeycomb structures has been numerically investigated. The finite element models of honeycomb test specimen composed of five core cells of identical mass have been constructed, and numerical simulations have been run on PAMCRASH. The dimensions of the sides of core cells as well as the angle between the sides have been shown to influence the shock absorption characteristics of the honeycomb structure. The specimen with regular hexagonal core cell shape is found to show the best shock absorbing capacity, and specimen with rectangle-like core cell are found to provide good shock absorbing characteristics.

  • PDF

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

경화공정 및 수분흡수에 따른 복합재료 하니콤 샌드위치 판넬의 접합강도특성 연구 (Bondline Strength Evaluation of Honeycomb Sandwich Panel For Cure Process and Moisture Absorption)

  • 최흥섭;전흥재;남재도
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.115-126
    • /
    • 2001
  • In this paper, through a series of comparative experiments, effects of two different cure processing methods, cocure and precure, on the mechanical properties of honeycomb core materials for aircraft applications are considered. Mass of moisture accumulated into the closed cells of the sandwich panel specimen from the measured mass of moisture diffused to the full saturation state into the elements(skin, adhesive layer, Nomex honeycomb), consisting the honeycomb sandwich specimen has been calculated. Water reservoir of 70$\^{C}$ was used to have specimens absorb moisture to see the influence of moisture absorbed into sandwich panel on its mechanical properties. For the repair condition holding for 2 hours at 177$\^{C}$(350℉) temperature, a pressure due to the vapor expansion in each cell of the sandwich panel, which may result in the local separation of the interface between laminated skin and the surface of the honeycomb, has been estimated by vapor pressure-temperature relation from the thermodynamic steam table and compared to the pressure from the ideal gas state equation. The bonding strengths of the laminated skins on the flat surface of the Nomex honeycomb have been compared by the flatwise tension test and climbing drum peel test performed at room temperature for dry, wet and wet-repair specimens, respectively.

물이 채워진 소화 배관의 전파 차폐도 해석 (Analysis on Shielding Effectiveness of Electromagnetic Wave in Fire Pipes)

  • 김윤증
    • 한국화재소방학회논문지
    • /
    • 제30권4호
    • /
    • pp.94-102
    • /
    • 2016
  • EMP 방호용 차폐 시설을 구축 할 때 소화 배관들의 방호 처리를 위하여 WBC 효과를 이용하며, 차폐도를 높이기 위해서 소화 배관 내부에 허니컴을 삽입한다. 이때 허니컴 단위 셀의 크기가 작으면 물의 흐름에 지장을 주며, 침전물에 의하여 소화 배관이 막히게 된다. 이것을 방지하기 위하여, 물의 분극손실에 의한 차폐도를 이용해서, 허니컴 셀의 크기는 키우고, 두께는 얇게 하면서도 요구하는 차폐도를 얻을 수 있는 설계 방법을 제시하였다.

알루미늄 허니콤의 충격 에너지 흡수 특성 예측 (Prediction to Shock Absorption Energy of an Aluminum Honeycomb)

  • 김현덕;이혁희;황도순;박정선
    • 한국항공우주학회지
    • /
    • 제39권5호
    • /
    • pp.391-399
    • /
    • 2011
  • 본 연구의 목적은 알루미늄 허니콤의 충격에너지 흡수 특성을 예측하는 것이다. 알루미늄 허니콤은 가볍고 에너지 흡수효율이 뛰어나며, 우주환경에서도 사용 가능하여 달착륙선의 충격흡수장치로 사용되고 있다. 충격에너지 흡수용 허니콤의 설계를 위해서는 에너지 흡수 과정에서 일정하게 유지되는 압축강도(crush strength)의 예측이 중요하다. 본 연구에서는 유한요소법을 이용하여 허니콤의 형상 및 충돌속도에 따른 압축강도를 예측하였다. 유한요소해석 프로그램은 Ls-dyna를 이용하였으며, 효율적인 유한요소 해석을 위하여 허니콤의 단위 셀 모델을 선정하였다. 이를 바탕으로 충돌속도 및 허니콤 포일(foil)의 두께 변화, 허니콤의 분기각(branch angle)에 따른 유한요소해석을 수행하여 에너지 흡수 특성을 분석하였다.

소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성 (Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK)

  • 모세영;전동환;권기승;손종렬
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

Rubber-Filled 샌드위치 복합재료의 진동 특성 평가 (Dynamic Performance of Rubber-Filled Sandwich Composite)

  • 황호;조치룡;김동욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.238-243
    • /
    • 2004
  • A new sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved damping performance. The viscoelastic fillings in the honeycomb cells was hoped to act as dampers and provide the function of energy dissipation in this combined material system. Dynamic test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s}$, $[0/45/-45/90]_{2s}$, $[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our material design concept.

  • PDF

Rubber-Filled 샌드위치 복합재료의 충격 특성 연구 (A Study on Impact Performance of Rubber-Filled Sandwich Composite)

  • 황호;조치룡;김동욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.65-68
    • /
    • 2004
  • A new multifunctional sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved impact performance. The fillings in the honeycomb cells was hoped to provide the act of energy dissipation in this combined material system. Low-velocity drop-weight test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s},\;[0/45/-45/90]_{2s}$. Load and energy history were checked and compared for the both groups of specimens, with and without rubber fillings. Further, the damaged faces were inspected visually by ultrasonic C-scan.

  • PDF

그래핀의 재생의학적 이용 (The Use of Graphene for Regenerative Medicine)

  • 윤정기;김병수
    • KSBB Journal
    • /
    • 제27권5호
    • /
    • pp.273-280
    • /
    • 2012
  • Graphene is a one-atom-thick sheet composed of carbon atoms only. It has a two-dimensional honeycomb structure with $sp^2$ orbital bonding, which presents some unique properties. Due to large Young's modulus, good electrical conductivity, ability to immobilize several kinds of small molecules and proteins, and biocompatibility of graphene, it has attracted interests inits ability to enhance cell growth and differentiation, followed by recent several studies. We reviewed about the osteogenic differentiation of mesenchymal stem cells, and neurogenic differentiation of neuron stem cells, and the ectodermal and mesodermal differentiation of induced pluripotent stem cells using graphene. Graphene has not only enhanced the adhesion and proliferation of mesenchymal stem cells, but also led to the faster differentiation even without any other exogenous signals. Nonetheless, graphene has some cytotoxicities in its amount-response manner, which is critical to regenerative medicine. The cytotoxicities of graphene were compared with those of grapheneoxide and carbon nanotubes.