• Title/Summary/Keyword: Honest signal

Search Result 3, Processing Time 0.016 seconds

Roles of flower scent in bee-flower mediations: a review

  • Bisrat, Daniel;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: Bees and flowering plants associations were initially began during the early Cretaceous, 120 million years ago. This coexistence has led to a mutual relationship where the plant serves as food and in return, the bee help them their reproduction. Animals pollinate about 75% of food crops worldwide, with bees as the world's primary pollinator. In general, bees rely on flower scents to locate blooming flowers as visual clue is limited and also their host plants from a distance. In this review, an attempt is made to collect some relevant 107 published papers from three scientific databases, Google Scholar, Scopus, and Web of Science database, covering the period from 1959 to 2021. Results: Flowering plants are well documented to actively emit volatile organic compounds (VOCs). However, only a few of them are important for eliciting behavioral responses in bees. In this review, fifty-three volatile organic compounds belonging to different class of compounds, mainly terpenoids, benzenoids, and volatile fatty acid derivatives, is compiled here from floral scents that are responsible for eliciting behavioral responses in bees. Bees generally use honest floral signals to locate their host plants with nectar and pollen-rich flowers. Thus, honest signaling mechanism plays a key role in maintaining mutualistic plant-pollinator associations. Conclusions: Considering the fact that floral scents are the primary attractants, understanding and identification of VOCs from floral scent in plant-pollinator networks are crucial to improve crop pollination. Interestingly, current advances in both VOCs scent gene identification and their biosynthetic pathways make it possible to manipulate particular VOCs in plant, and this eventually may lead to increase in crop productivity.

Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties

  • Min Jeong Kim;Nur Istianah;Bo Ram So;Hye Jee Kang;Min Jeong Woo;Su Jin Park;Hyun Jeong Kim;Young Hoon Jung;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1589-1598
    • /
    • 2022
  • Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansiiderived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1- picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and antioxidative marine cosmeceuticals.

Insect Communication: Concepts, Channels and Contexts (곤충의 의사소통: 개념, 채널 및 상황)

  • Jang, Yi-Kweon
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.383-393
    • /
    • 2011
  • Because communication facilitates behaviors that are critical for survival and reproduction, it is central to the study of behavior and evolution. One of the most important and difficult issues with respect to communication has been the definition of communication itself. Broadly, it can be defined as an exchange of information from a signaler to a receiver. However, evolution of a signal is likely possible only under conditions in which both the signaler and receiver increase fitness from the exchange of information, often referred to as "true communication." The three primary sensory channels of communication used by animals are chemical, visual, and acoustic. Chemical signals are the oldest and most widespread method of communication. Visual and acoustic signals convey a great deal of information due to ease of modulation, flexibility of signal production, and fast transmission. The most widespread contexts in which animals communicate are sexual interaction and conflict resolution. Signals used for sexual interaction typically contain information about species identity and sexual attractiveness, whereas signals used for conflict resolution may contain information about resource holding potential. Other contexts under which animals communicate include territorial defense, parent-offspring interactions, social integration, sharing of environmental information, and auto-communication.