• Title/Summary/Keyword: Honam shear zone

Search Result 10, Processing Time 0.028 seconds

A potential displacement marker of the Honam Shear Zone: Gaya anorthosite (호남 전단대의 잠재적 변위 지시자: 가야 지역 회장암체)

  • 권성택;사공희
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.207-209
    • /
    • 2003
  • The Honam Shear Zone, an important feature in the Phanerozoic geologic history of Korea, has attracted much attention due to its potential tectonic significance. However, little has been known about the displacement amount of the shear zone. Here, we propose a possible displacement marker for the shear zone. The geographic position and peculiar lithology of the Sancheong and Gaya anorthosite bodies in the south-central part of Korea suggest a NE-trending dextral strike slip shear zone that has a displacement of ca. 50 km. This hypothetical shear zone is considered as a part of the Honam Shear Zone since the former has the same trend and shear sense as the latter.

The Study on Geochronology and Petrogenesis of Foliated Granites in the Honam Shear Zone, South Korea (호남 전단대내에 분포하는 엽리상화강암류의 지질시대와 생성과정에 관한 연구)

  • Kim, Yong-Jun;Park, Young-Seog;Kang, Sang-Won
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.247-261
    • /
    • 1994
  • Honam Shear Zone is a mylonite zone approximately parallel to the NE-SW trend located southern part of Korea peninsula. Geologic ages and petrogenesis of foliated granites in this zone are as follows: Igneous rocks of this zone are composed of granite gneiss, Paleozoic granites, Songrim granites, Jurassic granites and Cretaceous granites. Foliated granites show deformed phase of Paleozoic and Songrim granites during Daebo Orogeny. And isotopic ages obtained from foliated granites are early Permian to late Triassic period (276~200 Ma). Most of foliated granite masses are igneous complex consisting of a series of differential product of cogenetic magma. The individual rock mass of foliated granites plotted on Harker diagram shows mostly similar trend of calc-alkali series. REE diagram indicates that LREE amount of foliated granites are more enriched than HREE and negative Eu anomalies of them are weaker than those of the other granites. From these data, we suggest the rocks are generated from continental margin under syntectonic environment. Original magma type of foliated granites correspond to I-type, syn-collision type and Hercyano type. In compressive stress field between Ogcheon folded belt and Youngnam massif, foliated granites had formed due to mylonitic deformation. Those facts indicate that magma of foliated granites would had been generated by melting in lower crust or contamination in upper mantle.

  • PDF

Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? (광주전단대 : 영남육괴와 옥천변성대의 지구조적 경계?)

  • Ha, Yeongji;Song, Yong-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • In this study we carried out SHRIMP U-Pb age dating of detrital zircons from age-unknown meta-sedimentary formations distributed around the NNE-SSW trending Gwangju Shear Zone, a branch of Honam Shear Zone, in the southwestern region of the Korean Peninsula. The meta-sedimentary formations from the west (Yeonggwang) and east (Jangseong) areas of the Gwangju Shear Zone have different patterns of zircon age distributions. Zircons of quartzites from the Yeonggwang area yield clusters at Neoarchean (ca. 2,500 Ma), Paleoproterozoic (ca. 1,860 Ma), Neoproterozoic (ca. 960 Ma) and Paleozoic (ca. 380 Ma) ages, but those of the Jangseong area yield clusters at only Neoarchean (ca. 2,500Ma) and Paleoproterozoic (ca. 1,880 Ma) ages. The contrastive patterns in age indicate that the meta-sedimentary formations from the west and east areas correspond to the meta-sedimentary formations of the Okcheon Metamorphic Belt and the sedimentary formations overlying on the Yeongnam Massif, respectively. The results imply that the Gwangju Shear Zone is the tectonic boundary between the Okcheon Metamorphic Belt and the Yeongnam Massif.

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

Ductile Shear Deformation around Jirisan Area, Korea (지리산 일대의 연성전단변형)

  • Ryoo, Chung-Ryul;Kang, Hee-Cheol;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.53-69
    • /
    • 2019
  • In the Jirisan area of the Yeongnam Massif, Korea, several ductile shear zones are developed within Precambrian gneiss complex (Jirisan metamorphic rock complex). The ductile shear zones have a general NS- and NNE-striking foliation with westward dipping directions. The foliation developed in the shear zones cut the foliation in gneiss complex. The stretching lineations are well developed in the foliated plane of the shear zone, showing ENE-trend with gentle plunging angle to the ESE direction. Within shear zone, several millimetric to centimetric size of porphyroclasts are deformed strongly as a sigmoid form by ductile shearing. The sigmoid patterns of porphyroclasts in the shear zones indicate the dextral shearing. The spatial distribution of ductile shear zone is characterized by the dominant NS- and NNE-striking dextral sense in the central and eastern regions respectively. In the western part, it develops in NE-striking dextral sense which is the general direction of the Honam shear zone. The U-Pb concordant ages obtained from the two samples, the strongly sheared leucocratic gneiss, are $1,868{\pm}3.8Ma$ and $1,867{\pm}4.0Ma$, respectively, which are consistent with the U-Pb ages reported around the study area. We supposed that the ductile shearing in the study area is occurred about 230~220 Ma during late stage of the continental collision around Korea and is preceded by granitic intrusion related to subduction during 260~230 Ma, which are supported by compiling the age data from sheared gneiss, deformed mafic dyke intruded gneiss complex, and non-deformed igneous rocks.

SHRIMP U-Pb Ages of the Namwon and Sunchang Granites (남원화강암과 순창화강암의 SHRIMP U-Pb 연령)

  • Jo, Hui Je;Park, Kye-Hun;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.197-208
    • /
    • 2013
  • The Namwon and Sunchang granites are neighbouring plutons intruding the Yeongnam massif and the Okcheon metamorphic belt, respectively in the southwestern part of the Korean peninsula. In this study, SHRIMP zircon U-Pb ages are determined from these plutons. The results show that the emplacement age of the Namwon granite is $185.8{\pm}0.9(2{\sigma})$ Ma. We obtained $175.0{\pm}2.0(2{\sigma})$ Ma from the northern part and $179.8{\pm}0.9(2{\sigma})$ Ma from the central part of the Sunchang granite, yielding $177.4{\pm}1.3(2{\sigma})$ Ma as the average age of the pluton. Such age results confirm that the Honam shear zone, which cause marked deformation of the Sunchang granite, was active after ca. 175 Ma.

Temperature and Timing of the Mylonitization of the Leucocratic Granite in the Northeastern Flank of the Taebaeksan Basin

  • Kim, Hyeong-Soo
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.434-449
    • /
    • 2012
  • The Mesozoic leucocratic granite in the northeastern margin of the Taebaeksan Basin was transformed to protomylonite and mylonite. Mylonitic foliations generally strike to NWWNW and dip to NE with the development of a sinistral strike-slip (top-to-the-northwest) shear sense. Grain-size reduction of feldspar in the mylonitized leucocratic granite occurred due to fracturing, myrmekite formation and neocrystallization of albitic plagioclase along the shear fractures of K-feldspar porphyroclasts. As the deformation proceeded, compositional layering consisting of feldspar-, quartz- and/or muscovite-rich layers developed in the mylonite. In the feldspar-rich layer, fine-grained albitic plagioclase and interstitial K-feldspar were deformed dominantly by granular flow. On the other hand, quartz-rich layers containing core-mantle and quartz ribbons structures were deformed by dislocation creep. Based on calculations from conventional two-feldspar and ternary feldspar geothermometers, mylonitization temperatures of the leucocratic granite range from 360 to $450^{\circ}C$. It thus indicates that the mylonitization has occurred under greenschist-facies conditions. Based on the geochemical features and previous chronological data, the leucocratic granite was emplaced during the Middle Jurassic at volcanic arc setting associated with crustal thickening. And then the mylonitization of the granite occurred during the late Middle to Late Jurassic (150-165 Ma). Therefore, the mylonitization of the Jurassic granitoids in the Taebaeksan Basin was closely related to the development of the Honam shear zone.

Geochemistry, Isotope Properties and U-Pb Sphene Age of the Jeongeup Foliated Granite, Korea (정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀 연대)

  • Jeong, Youn-Joong;Cheong, Chang-Sik;Park, Cheon-Young;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • In this paper, we investigate the geochemical and isotope properties of the Jeongeup foliated granite (hereafter, the JFG) in the Jeongeup area, aiming at establishing the movement age of the Honam shear zone by U-Pb sphene geochronology. In the AMF diagram, the JFG corresponds to the calc alkalic rock series, and belongs to the magnesia region in the diagram of silica versus $FeO^{total}/(FeO^{total}+MgO)$. Additionally, in the Rb-Ba-Sr diagram, it is classified as granodiorite and anomalous granite with distinctive negative Eu-anomaly in the REE patterns. According to the silica and trace element contents, the JFG falls on the type VAG+syn-COLG, which implies that this was formed under the circumstance of compressional continental margin or volcanic arc. $^{143}Nd/^{144}Nd$ isotope ratios range from 0.511495 to 0.511783 and $T_{DM}$ are calculated to be about $1.68{\sim}2.36Ga$. U-Pb sphene ages of the JFG are $172.9{\pm}1.7Ma$ and $170.7{\pm}2.8Ma$, based on $^{238}U-^{206}Pb$ and $^{235}U-^{207}Pb$ ages, respectively. Presumably, the dextral ductile shearing in the Jeongeup area has occurred after 173 Ma.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.