• Title/Summary/Keyword: Homomorphic encryption

Search Result 80, Processing Time 0.028 seconds

LWE와 완전동형암호에 대한 분석 및 동향

  • Yoo, Joon Soo;Yoon, Jiwon
    • Review of KIISC
    • /
    • v.30 no.5
    • /
    • pp.111-119
    • /
    • 2020
  • 동형암호(homomorphic encryption)는 암호화된 데이터 사이에서 임의의 연산을 가능하게 하는 유망한 암호학적 스킴(scheme)이다. 이를 활용하면 암호화된 데이터를 복호화하지 않고, 암호화된 상태에서 임의의 연산을 수행 할 수 있을 뿐만아니라, 격자를 기반(lattice-based)으로 하여 양자 알고리즘에 내성(resistant)이 있어 안전하다. 하지만, 동형암호를 이해하기 위해서는 전문적인 암호 또는 계산적인 이론의 지식과 이해가 필요하다. 따라서 본 논문에서는 완전동형암호(fully homomorphic encryption)의 기저에 있는 LWE(learning with error) 문제에서부터 완전동형암호의 핵심인 NAND 게이트와 부트스트래핑(bootstrapping)까지의 과정을 어렵지 않게 설명하여 초보자들의 이해를 돕고자 한다.

A Study on Data Collection Protocol with Homomorphic Encryption Algorithm (동형 암호의 데이터 수집 프로토콜 적용 방안 연구)

  • Lee, Jongdeog;Jeong, Myoungin;Yoo, Jincheol
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.42-50
    • /
    • 2021
  • As the Internet environment develops, data-analysis-based applications have been widely and extensively used in the past decade. However, these applications potentially have a privacy problem in that users' personal information may be leaked to unauthorized parties. To tackle such a problem, researchers have suggested several techniques including data perturbation and cryptography. The homomorphic encryption algorithm is a relatively new cryptography technology that allows arithmetic operations for encrypted values as it is without decryption. Since original values are not required, we believe that this method provides better privacy protection than other existing solutions. In this work, we propose to apply a homomorphic encryption algorithm that protects personal information while enabling data analysis.

Analysis of Homomorphic Authenticated Encryption (Encrypt with Authenticate Construction) (결합 준동형 인증 암호의 안전성 분석)

  • Kim, Jinsu
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Data outsourcing utilizing the Cloud faces a problem of the third-party exposure, modulation, and reliability for the provided computational delegation results. In order to solve those problematic security issues, homomorphic encryption(HE) which executes calculation and analysis on encrypted data becomes popular. By extension, a new type of HE with a authentication functionality, homomorphic authenticated encryption(HAE) is suggested. However, a research on the HAE is on the initial stage. Furthermore, based on a message authenticated scheme with HE, the method and analysis to design is still absent. This paper aims to analyze an HAE, with a generic combination of a message authenticated scheme and a HE, known as "Encrypt with Authentication". Following a series of analysis, we show that by adopting a unforgeable message authenticated scheme, the generically constructed HAE demonstrated an unforgeability as well. Though, a strong unforgeability is not the case. This paper concludes that although indistinguishable HE can be applied to design the HAE, a security issue on the possibility of indistinguishability is still not satisfied.

One Improved RLWE-based FHE and Fast Private Information Retrieval

  • Song, Wei-Tao;Hu, Bin;Zhao, Xiu-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6260-6276
    • /
    • 2019
  • With the rapid development of cloud computing, it raises real questions on privacy protection, which greatly limits the use of cloud computing. However, fully homomorphic encryption (FHE) can make cloud computing consistent with privacy. In this paper, we propose a simpler FHE scheme based on ring LWE problem, with a smaller size of ciphertext and a lower noise-expansion factor for homomorphic multiplication. Then based on our optimized RLWE-based FHE scheme, we propose a fast single-database private information retrieval protocol, combining with batching and number theoretic transform technology.

An Efficient Somewhat HE scheme over Integers and Its Variation

  • Yang, Haomiao;Kim, Hyunsung;Tang, Dianhua;Li, Hongwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2497-2513
    • /
    • 2013
  • In 2010, Dijk et al. demonstrated a simple somewhat homomorphic encryption (HE) scheme over the integers of which this simplicity came at the cost of a public key size in $\tilde{O}({\lambda}^{10})$. Although in 2011 Coron et al. reduced the public key size to $\tilde{O}({\lambda}^7)$, it is still too large for practical applications, especially for the cloud computing. In this paper, we propose a new form of somewhat HE scheme to reduce further the public key size and a variation of the scheme to optimize the ciphertext size. First of all, we propose a new somewhat HE scheme which is built on the hardness of the approximate greatest common divisor (GCD) problem of two integers, where the public key size in the scheme is reduced to $\tilde{O}({\lambda}^3)$. Furthermore, we can reduce the length of the ciphertext of the new somewhat HE scheme by applying the modular reduction technique. Additionally, we give simulation results for evaluating ability of the proposed scheme.

Design of Configuration Management using Homomorphic Encryption in Mobile Cloud Service (모바일 클라우드 서비스 상에서 준동형 암호 기반의 형상 관리 방안)

  • Kim, Sun-Joo;Kim, Jin-Mook;Jo, In-June
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2217-2223
    • /
    • 2012
  • As smartphone users are over 20 million, companies, which offer cloud computing services, try to support various mobile devices. If so, users can use the same cloud computing service using mobile devices, as sharing document. When user share the work, there are problem in configuration management, data confidentiality and integrity. In this paper, we propose a method that cloud computing users share document efficiently, edit encrypted docuements, and manage configuration based on homomorphic encryption, which integrity is verifiable.

Fully Homomorphic Encryption Scheme without Key Switching (키 전환이 필요 없는 완전 준동형 암호화 기법)

  • Kim, Jae-Heon;Yoo, Sang-Kyung;Lee, Sang-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.428-433
    • /
    • 2013
  • We present a fully homomorphic encryption (FHE) scheme without key switching based on ring- learning with errors (RLWE) problems and some other assumption. Previous FHE schemes based on LWE needed a step called key switching to reduce the dimension of ciphertext. The key switching step actually needs a heavy computation and severe increasement of keys. So the key switching step is a big burden for implementing FHE Schemes. We suggest a FHE scheme without key switching step by reducing the dimension of ciphertexts in other way. Instead of throwing away key switching, we need another hardness assumption of the difficulty of solving quadratic equation over rings.

Efficient Privacy-Preserving Metering Aggregation in Smart Grids Using Homomorphic Encryption (동형 암호를 이용한 스마트그리드에서의 효율적 프라이버시 보존 전력량 집계 방법)

  • Koo, Dongyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.685-692
    • /
    • 2019
  • Smart grid enables efficient power management by allowing real-time awareness of electricity flows through two-way communication. Despite its various advantages, threats to user privacy caused by frequent meter reading hinder prosperous deployment of smart grid. In this paper, we propose a privacy-preserving aggregation method exploiting fully homomorphic encryption (FHE). Specifically, it achieves privacy-preserving fine-grained aggregation of electricity usage for smart grid customers in multiple electrical source environments, while further enhancing efficiency through SIMD-style operations simultaneously. Analysis of our scheme demonstrates the suitability in next-generation smart grid environment where the customers select and use a variety of power sources and systematic metering and control are enabled.

A STUDY OF USING CKKS HOMOMORPHIC ENCRYPTION OVER THE LAYERS OF A CONVOLUTIONAL NEURAL NETWORK MODEL

  • Castaneda, Sebastian Soler;Nam, Kevin;Joo, Youyeon;Paek, Yunheung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.161-164
    • /
    • 2022
  • Homomorphic Encryption (HE) schemes have been recently growing as a reliable solution to preserve users' information owe to maintaining and operating the user data in the encrypted state. In addition to that, several Neural Networks models merged with HE schemes have been developed as a prospective tool for privacy-preserving machine learning. Those mentioned works demonstrated that it is possible to match the accuracy of non-encrypted models but there is always a trade-off in the computation time. In this work, we evaluate the implementation of CKKS HE scheme operations over the layers of a LeNet5 convolutional inference model, however, owing to the limitations of the evaluation environment, the scope of this work is not to develop a complete LeNet5 encrypted model. The evaluation was performed using the MNIST dataset with Microsoft SEAL (MSEAL) open-source homomorphic encryption library ported version on Python (PyFhel). The behavior of the encrypted model, the limitations faced and a small description of related and future work is also provided.

Precise Max-Pooling on Fully Homomorphic Encryption (완전 동형 암호에서의 정밀한 맥스 풀링 연산)

  • Eunsang Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.375-381
    • /
    • 2023
  • Fully homomorphic encryption enables algebraic operations on encrypted data, and recently, methods for approximating non-algebraic operations such as the maximum function have been studied. However, precise approximation of max-pooling operations for four or more numbers have not been researched yet. In this study, we propose a precise max-pooling approximation method using the composition of approximate polynomials of the maximum function and theoretically analyze its precision. Experimental results show that the proposed approximate max-pooling has a small amortized runtime of less than 1ms and high precision that matches the theoretical analysis.