• Title/Summary/Keyword: Homomorphic Transformation

Search Result 4, Processing Time 0.023 seconds

Image Enhancement Using Homomorphic Transformation and Multiscale Decomposition (호모모프변환과 다중 스케일 분해를 이용한 영상향상)

  • Ahn, Sang-Ho;Kim, Ki-Hong;Kim, Young-Choon;Kwon, Ki-Ryong;Seo, Yong-Su
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1046-1057
    • /
    • 2004
  • An image enhancement method using both homomorphic transformation and multiscale decomposition is proposed. The original image is first transformed to homomorphic domain by taking the logarithm, is then separated to multiscales. These multiscales are combined with weighting. The combined signal is exponentially transformed back into intensity domain. In homomorphic domain, the magnitude control of low frequency component make change the dynamic range, and the magnitude control of the other frequency components contribute to enhancement of the contrast. The "${\AA}$ trous" algorithm, which has a simple and efficient scheme, is used for multiscale decomposition. The performance of proposed method is verified by simulation.

  • PDF

Annotation-guided Code Partitioning Compiler for Homomorphic Encryption Program (지시문을 활용한 동형암호 프로그램 코드 분할 컴파일러)

  • Dongkwan Kim;Yongwoo Lee;Seonyoung Cheon;Heelim Choi;Jaeho Lee;Hoyun Youm;Hanjun Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.291-298
    • /
    • 2024
  • Despite its wide application, cloud computing raises privacy leakage concerns because users should send their private data to the cloud. Homomorphic encryption (HE) can resolve the concerns by allowing cloud servers to compute on encrypted data without decryption. However, due to the huge computation overhead of HE, simply executing an entire cloud program with HE causes significant computation. Manually partitioning the program and applying HE only to the partitioned program for the cloud can reduce the computation overhead. However, the manual code partitioning and HE-transformation are time-consuming and error-prone. This work proposes a new homomorphic encryption enabled annotation-guided code partitioning compiler, called Heapa, for privacy preserving cloud computing. Heapa allows programmers to annotate a program about the code region for cloud computing. Then, Heapa analyzes the annotated program, makes a partition plan with a variable list that requires communication and encryption, and generates a homomorphic encryptionenabled partitioned programs. Moreover, Heapa provides not only two region-level partitioning annotations, but also two instruction-level annotations, thus enabling a fine-grained partitioning and achieving better performance. For six machine learning and deep learning applications, Heapa achieves a 3.61 times geomean performance speedup compared to the non-partitioned cloud computing scheme.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

Lift-Off Invariance Transformations for Electromagnetic Eddy Current Nondestructive Evaluation Signals (다양한 센서 측정 거리로부터 획득한 자기적 와전류 신호의 불변 변환 처리 기법)

  • Kim, Dae-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.207-212
    • /
    • 2004
  • Eddy current (EC) testing methods are widely used in a variety of applications including the inspection of steam generator tubes in nuclear power plants, aircraft parts and airframes. A key factor that affects the EC signal is lift-off which means the physical distance between a sensor and a specimen in the testing. In practice, it is difficult to keep track of the actual value of the lift -off during a specific experiment, simulation or testing in the field, which is essential for accurate interpretation of the signal to be used in the following steps. Hence it is necessary to have a scheme to render the EC signal invariant to the effects of lift-off in spite of the changes in the real world. This paper describes a new method for compensating EC signals for variations in lift-off by acquiring an invariance feature using a homomorphic operator and neural network techniques. The signals from various lift-offs are transformed to obtain a zero lift-off equivalent signal that can be subsequently used for defect characterization in the next step.