• 제목/요약/키워드: Homography Estimation

검색결과 47건 처리시간 0.023초

호모그래피행렬을 이용한 노면검출 (Ground Plane Detection Using Homography Matrix)

  • 이기용;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.983-988
    • /
    • 2011
  • This paper presents a robust method for ground plane detection in vision-based applications based on a monocular sequence of images with a non-stationary camera. The proposed method, which is based on the reliable estimation of the homography between two frames taken from the sequence, aims at designing a practical system to detect road surface from traffic scenes. The homography is computed using a feature matching approach, which often gives rise to inaccurate matches or undesirable matches from out of the ground plane. Hence, the proposed homography estimation minimizes the effects from erroneous feature matching by the evaluation of the difference between the predicted and the observed matrices. The method is successfully demonstrated for the detection of road surface performed on experiments to fill an information void area taken place from geometric transformation applied to captured images by an in-vehicle camera system.

깊이 영상 기반 필터를 적용한 효과적인 호모그래피 추정 방법 (A Method for Effective Homography Estimation Applying a Depth Image-Based Filter)

  • 주용준;홍명덕;윤의녕;고승현;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권2호
    • /
    • pp.61-66
    • /
    • 2019
  • 증강현실은 카메라로 촬영하고 있는 영상에 가상의 객체를 실시간으로 합성하여 가상의 객체가 현실에 존재하는 것처럼 보이게 하는 기술이다. 증강현실에서 현실에 존재하는 물체에 가상의 물체를 증강하기 위해서는 현실에 존재하는 물체의 위치와 방향을 정확하게 추정해야 하는데, 이 때 활용되는 기술이 영상의 호모그래피(Homography) 이다. 이러한 호모그래피는 영상의 특징점 좌표에 RANSAC 알고리즘을 적용하여 추정할 수 있는데, RANSAC 알고리즘을 이용한 호모그래피 추정 방식은 호모그래피를 추정하고자하는 물체 이외의 배경에 특징점이 많을 경우 정확한 호모그래피를 추정할 수 없다는 문제점이 존재했다. 본 논문에서는 호모그래피를 추정하고자하는 물체가 가까이에 있고 배경이 상대적으로 멀리 위치해있을 때 영상 각 픽셀의 거리 값을 알 수 있는 깊이 영상을 활용하면 물체와 배경을 쉽게 분리할 수 있다는 점을 이용하여 배경의 특징점을 필터링하는 방법을 제안한다. 이를 위하여 본 논문에서는 흑백조 영상인 깊이 영상을 Otsu 알고리즘을 이용하여 사용자와 거리가 가까운 영역과 거리가 먼 영역으로 이진화하고, RGB 영상에서 추출된 특징점 중에서 거리가 먼 영역에 위치한 특징점을 제거함으로써 특징점을 활용한 호모그래피 추정 결과를 향상시킨다. 이러한 방법을 기존의 호모그래피 추정 방법에 적용한 결과 수행시간이 71.7% 단축되었으며, RANSAC 알고리즘의 반복 횟수가 69.4% 줄어들었고, 참정보 비율이 16.9% 증가하였다.

Camera Motion Parameter Estimation Technique using 2D Homography and LM Method based on Invariant Features

  • Cha, Jeong-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.297-301
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

효율적인 호모그래피 추정을 통한 파노라마 영상 생성 (Efficient Homography Estimation for Panoramic Image Generation)

  • 서상원;정수웅;한윤상;최종수;이상근
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.215-224
    • /
    • 2013
  • 본 논문에서는 고해상도 영상에서 호모그래피를 효율적으로 추정하는 방법을 제안하였다. 호모그래피를 정확하게 추정하는 것은 영상 정합 기술에서 가장 중요한 부분이다. 하드웨어의 급속한 발전으로 고해상도 영상을 쉽게 취득 할 수 있게 되었지만, 데이터의 크기가 증가함에 따라 정확한 일치관계를 추정하는데 많은 계산량이 요구되었다. 또한, 고해상도의 영상에서 확률적으로 부정확한 호모그래피가 추정되는 문제가 발생하였다. 따라서 우리는 원 영상을 각 스케일별로 다운 샘플링한 다수의 영상을 생성하여 각 다운 샘플링된 영상에 해당하는 호모그래피를 추정한 후 투영 오차가 가장 작은 것을 선택하여 원 영상에 적용할 수 있게 보정할 수 있는 방법을 제안하였다. 또한, 영상을 정합하는 과정에서 기준 영상과 대상 영상의 색상 톤의 차이가 큰 경우에는 중첩영역의 지역 정보만을 이용하여 기준 영상과 대상 영상의 색상 톤을 일치시키는 방법을 제안하였다. 실험 결과 기존의 방법보다 3.2M 픽셀의 해상도 영상에서 약 3배, 8M 픽셀의 해상도 영상에서 약 5배 이상 빠른 결과를 얻을 수 있음을 확인하였다. 이는 입력 영상의 해상도가 커질수록 제안한 방법의 효과가 더 커진다는 것을 보여준다.

수정 Starburst 알고리즘과 Homography Normalization을 이용한 시선추적 (Gaze Tracking Using a Modified Starburst Algorithm and Homography Normalization)

  • 조태훈;강현민
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1162-1170
    • /
    • 2014
  • 본 논문에서는 두 개의 카메라를 이용하여 보다 정확한 동공 인식을 통한 원격방식의 시선 추적을 제안한다. 헤드 장착형 시선추적용으로 개발된 Starburst 알고리즘은 원격방식의 시선추적에서는 카메라가 보다 넓은 영역을 보기 때문에 눈썹, 눈꼬리 등 외란이 많아 스타버스트 알고리즘을 바로 적용하면 동공 중심 추출에 실패하는 경우가 많았다. 이에 템플렛매칭을 이용하여 대략적인 동공영역을 찾고, 찾은 영역 내에서만 스타버스트 알고리즘으로 동공의 경계 후보점들을 찾은 후 보완된 RANSAC 알고리즘으로 타원근사하여 동공의 중심을 추출하였다. 추출된 동공중심을 머리의 움직임에 거의 영향을 받지 않도록 4개의 적외선 LED를 모니터 네 구석에 부착하고 Homography normalization을 적용하였다. 스크린 좌표계로 변환할 때 기존에는 호모그래피를 사용하였으나, 카메라 렌즈의 비선형왜곡을 보상하기 위해 여기서는 고차다항식을 이용한 캘리브레이션 기법을 이용하였다. 끝으로, 두 대의 카메라를 사용하여 정확도와 신회성이 향상됨을 보인다.

기하학적 불변벡터 기탄 2D 호모그래피와 비선형 최소화기법을 이용한 카메라 외부인수 측정 (Camera Extrinsic Parameter Estimation using 2D Homography and Nonlinear Minimizing Method based on Geometric Invariance Vector)

  • 차정희
    • 인터넷정보학회논문지
    • /
    • 제6권6호
    • /
    • pp.187-197
    • /
    • 2005
  • 본 논문에서는 불변 점 특징에 기반한 카메라 동작인수 측정방법을 제안한다. 일반적으로 영상의 특징정보는 카메라 뷰포인트에 따라 변하는 단점이 있어 시간이 지나면 정보량이 증가하게 된다. 또한 카메라 외부인수 산출을 위한 비선형 최소제곱 측정을 이용한 LM 방법은 초기값에 따라 최소점에 근접하는 반복회수가 다르고 지역 최소점에 빠질 경우 수렴시간이 증가하는 단점이 있다. 본 논문에서는 이러한 문제를 개선하기 위해 첫째, 기하학의 불변 벡터를 사용하여 특징 모델을 구성하는 것을 제안하였다. 둘째, 2D 호모그래피와 LM 방법을 이용하여 정확도와 수렴도를 향상시키는 2단계 측정 방법을 제안하였다. 실험에서는 제안한 알고리즘의 우수성을 입증하기 위해 기존방법과 제안한 방법을 비교 분석하였다.

  • PDF

컨테이너 BIC-code 인식을 위한 Transformer Network (Transformer Network for Container's BIC-code Recognition)

  • 권희주;강현수
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.19-26
    • /
    • 2022
  • 본 논문은 컨테이너의 BIC-code를 인식하기 위한 전처리(pre-processing) 방법에 관한 것으로서, BIC-code가 포함된 관심 영역을 찾고 이 관심 영역을 광학 문자 인식에 용이하도록 워핑하기 위한 호모그래피 행렬을 추정할 수 있는 네트워크를 제안한다. 제안하는 네트워크의 구조는 STN(Spatial Transformer Networks)의 구조를 차용하였으며, 관심 영역 검출, 호모그래피 변환을 위한 행렬 추정, 행렬을 이용한 워핑 단계로 구성되어 있다. 제안된 네트워크를 이용하여 관심 영역과 행렬을 동시에 추정하고, 추정된 행렬을 이용하여 관심 영역의 원근 왜곡을 바로 잡음으로써 BIC-code의 인식 정확도 향상에 기여한다. 성능 평가를 위하여 총 5인의 평가원이 출력 영상을 5점 만점으로 평가한 결과 평균 4.25점을 받았으며, 육안으로 확인했을 시 총 312장의 사진 중 224장의 사진이 완벽하게 보정됨과 동시에 관심 영역을 출력하였다.

3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법 (Detection of the co-planar feature points in the three dimensional space)

  • 이석한
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.499-508
    • /
    • 2023
  • 본 논문에서는 3차원 공간 내에서 동일 평면 상에 존재하는 특징점들의 좌표를 추정하기 위한 기법을 제안한다. 제안된 방법은 카메라 영상만을 이용하여 3차원 공간 내에 존재하는 다수의 특징점들을 검출한 다음 동일 평면 상에 위치하지 않는 특징점들은 제거시킨다. 이를 위해서 3차원 공간 내의 평면 객체와 2차원 카메라 영상 평면 사이의 평면 호모그래피(homography) 관계를 추정한 다음 각 특징점들의 평면 객체 상에서의 역사영 오차를 계산하고 오차값이 기준 값보다 큰 특징점들은 좌표값 추정 과정에서 제외시킨다. 제안된 방법은 별도의 센서 또는 최적화 알고리즘 없이 카메라 영상으로부터 추정된 평면 호모그래피 만을 이용한다. 실험 결과를 통해서 초당 40프레임 이상의 처리 속도를 보인다는 것을 확인할 수 있었으며, 또한 RGB-D 카메라를 이용하는 경우와 비교해도 처리 속도에 큰 차이를 보이지 않았으며, 특히 제안된 방법은 검출되는 특징점의 수가 지속적으로 증가하는 조건에서도 처리 속도가 거의 영향을 받지 않음을 알 수 있었다.

PPIV 인식기반 2D 호모그래피와 LM방법을 이용한 카메라 외부인수 산출 (Camera Extrinsic Parameter Estimation using 2D Homography and LM Method based on PPIV Recognition)

  • 차정희;전영민
    • 전자공학회논문지SC
    • /
    • 제43권2호
    • /
    • pp.11-19
    • /
    • 2006
  • 본 논문에서는 사영과 치환불변 점 특징을 기반으로 카메라의 외부인수를 산출하는 방법을 제안한다. 기존 연구에서의 특징 정보들은 카메라의 뷰 포인트에 따라 변화하기 때문에 대응점 산출이 어렵다. 따라서 본 논문에서는 카메라 위치에 무관한 불변 점 특징을 추출하고 시간 복잡도 감소와 정확한 대응점 산출을 위해 유사도 평가함수와 Graham 탐색 방법을 이용한 새로운 정합방법을 제안한다. 또한 카메라 외부인수 산출단계에서는 LM 알고리즘의 수렴도를 향상시키기 위해 2단계 카메라 동작인수 산출방법을 제안한다. 실험에서는 다양한 실내영상을 이용하여 기존방법과 비교, 분석함으로써 제안한 알고리즘의 우수성을 입증하였다.

객체 탐지 및 호모그래피 추정을 이용한 안저영상 자동 조정체계 시스템 연구 (A Study on Automatic Alignment System based on Object Detection and Homography Estimation)

  • 인상규;범정현;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.401-403
    • /
    • 2021
  • 본 시스템은 같은 환자로부터 촬영한 기존 안저영상과 초광각 안저영상을 Paired Dataset으로 지니고 있으며, 영상의 크기 및 해상도를 똑같이 맞추고, 황반부와 신경유두 및 혈관의 위치를 미세조정하는 과정을 자동화하는 것을 목표로 하고 있다. 이 과정은 황반부를 중심으로 하여 영상을 잘라내어 이미지의 크기를 맞추는 과정(Scaling)과, 황반부를 중심으로 잘라낸 한 쌍의 영상을 포개었을 때 황반부, 신경 유두, 혈관 등의 위치가 동일하도록 미세조정하는 과정(Warping)이 있다. Scaling Stage에선 기존 안저영상과 초광각 안저영상의 촬영범위가 현저하게 차이나기 때문에, 황반변성 부위를 잘 나타내도록 사전에 잘라낼 필요가 있으며, 이를 신경유두의 Object Detection을 활용할 예정이다. Warping Stage에선 동일한 위치에 같은 황반변성 정보가 내포되어야 하므로 규격조정 및 위치조정 과정이 필수적이며, 이후 안저영상 내의 특징들을 매칭하는 작업을 하기 위해 회전, 회절, 변환 작업 등이 이루어지며, 이는 Homography Estimation을 통하여 이미지 변환 matrix를 구하는 방법으로 진행된다. 자동조정된 안저영상 데이터는 추후에 GAN을 이용한 안저영상 생성모델을 위한 학습데이터로 이용할 예정이며, 현재로선 2500쌍의 데이터를 대상으로 실험을 진행중이지만, 최종적으로 3만 쌍의 안저영상 데이터를 목표로 하고 있다.