• 제목/요약/키워드: Homogenization Analysis

검색결과 224건 처리시간 0.025초

FUNDAMENTALS AND RECENT DEVELOPMENTS OF REACTOR PHYSICS METHODS

  • CHO NAM ZIN
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.25-78
    • /
    • 2005
  • As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear reactors and innovative new fuel designs in the coming. After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor, this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to resolve them as follows: (1) Derivation of the multi group transport equations and the multi group diffusion equations, with representative solution methods thereof. (2) Elements of modem (now almost three decades old) diffusion nodal methods. (3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed cores. Homogenization and related issues. (4) Description of the analytic function expansion nodal (AFEN) method. (5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods. (6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis. (7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in particular, in very high temperature gas reactor (VHTR) cores.

Finite Element Analysis Through Mechanical Property Test and Elasto-plastic Modeling of 2.5D Cf/SiCm Composite Analysis (2.5D Cf/SiCm 복합재의 기계적 물성 시험과 탄소성 모델링을 통한 유한요소해석)

  • Lee, MinJung;Kim, Yeontae;Lee, YeonGwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제48권9호
    • /
    • pp.663-670
    • /
    • 2020
  • A study on mechanical property characterization and modeling technique was carried out to approximate the behaviour of structures with 2.5D C/SiC material. Several tensile tests were performed to analyze the behaviour characteristics of the 2.5D C/SiC material and elastic property was characterized by applying a mathematical homogenization and a modified rule of mixture. SiC matrix representing the elasto-plastic behavior approximates as a bilinear function. Then the equivalent yield strength and equivalent plastic stiffness were calculated by minimizing errors in experiment and approximation. RVE(Representative Volume Element)was defined from the fiber and matrix configuration of 2.5D C/SiC and a process of calculating the effective stiffness matrix by applying the modified rule of mixture to RVE was implemented in the ABAQUS User-defined subroutine. Finite element analysis was performed by applying the mechanical properties of fiber and matrix calculated based on the proposed process, and the results were in good agreement with the experimental results.

A study on the determination of residual Antibiotics and Synthetic Antibacterial Agents in Meat(III) Simultaneous Gas Chromatography/Mass Spectrometry Analysis of Erythromycin and Tylosin (식육중의 잔류 항생.항균제의 검정에 관한 연구(III) Macrolide계 항생물질인 Erythromycin과 Tylosin의 Gas Chromatography/Mass Spectrometry 동시분석)

  • 류재천;송윤선;양종순;서지원;김명수;박종세
    • Journal of Food Hygiene and Safety
    • /
    • 제8권1호
    • /
    • pp.17-23
    • /
    • 1993
  • In an attempt to quantitate and qualitate residual antibiotics and antibacterial agents n meat simultaneously, we studied a gas chromatogrphy-mass spectrometry (GC/MS) analysis. For a simultaneous analysis of macrolide antibiotics such as erythromycin and tylosin in meat, the homogenization with MeOH, defatting with n-hexane, extraction with CHCl3, elution with CHCl3 : MeOH=2:1 from Sep-Pak silica cartridge, acid gydrolysis, back extraction with CHCl3, and quantitation by selected ion monitoring(SIM) mode after trimethylsilyl derivatization were performed. The recoveries of erythromycin and tylosin (CV,%) at 10 ppm fortification level were 90.59(4.89) and 45.91(0.20) , and the detection limits of those were 0.02 and 2.0 $\mu\textrm{g}$/g beef, respectively. From these results, the developed analytical method using GC/MS-SIM mode allows excellent detection and quantitation of residual macrolide antibiotics in meats, using complementary method with bio-assay.

  • PDF

Stress Analysis of Dental Implant System Using Homogenization Technique

  • Lee, Jin-hee;Koh, Chul-Su;Choi, Kui-won
    • The Journal of the Korean dental association
    • /
    • 제32권11호통권306호
    • /
    • pp.805-814
    • /
    • 1994
  • 균질화기법을 적용하여 치과 임플란트 시스템에 대한 미세응력해석을 수행하였다. 균질화기법은 하악골내의 해면골과 같은 비균질 비등방성 구조체에 대한 물질모델을 설정하고 이를 이용하여 수치해석시 작은 계산량으로도 해면골조직의 미세단위까지의 응력해석을 가능케 하여준다. 균질화기법을 적용하여 계산된 해면골의 스트레스레벨은 기존의 방법으로 계산도니 수치보다 열배이상 높게 나타났는데, 이는 치과 임플란트 시스템의 응력상태에 대한 기존의 인식과 큰 차이를 보이고 있어 치과 임플란트 설계에 대한 전반적인 검토가 필요한 것으로 생각된다. 또한 균질화기법을 통하여 임플란트 시스템에 대한 측방력의 효과는 매우 크게 나타남을 확인할 수 있었고, 임플란트 시스템의 응력해석시 지나치게 단순화된 유한요소 모델을 사용함으로서 발생되는 오류가 지적되었다.

  • PDF

Preparation and Drug Release Profiles of Solid Lipid Nanoparticles(SLN) (의약품의 Solid Lipid Nanoparticle의 제조 및 용출특성)

  • Yoo, Hye-Jong;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권2호
    • /
    • pp.125-135
    • /
    • 1996
  • Solid lipid nanoparticles(SLN) are particulate systems for parenteral drug administration and suitable for controlled release. SLN were prepared by homogenization process. Dispersion at increased temperature (molten lipid) was performed to yield SLN loaded with lipophilic drugs. Tetracaine base, lidocaine base, prednisolone, methyltestosterone and ethinylestradiol were used as model drugs to access the loading capacity and to study the release behavior. To investigate production parameters(lipids, surfactant concentration, homogenizing rpm) in the formation of SLN, particle size was performed by laser diffraction analysis. The mean particle size of SLN with stearic acid or trilaurin was below 1 micron. By decreasing the particle size and increasing the surfactant concentration, the release rate was increased especially in the case of highly lipophilic drug loaded SLN. Methyltestosterone or ethinylestradiol loaded SLN showed a distinctly prolonged release over a few days.

  • PDF

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.691-729
    • /
    • 2018
  • In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

Development of CAD System for Optimal Topology Design using Density Distribution (밀도 분포를 이용한 최적 위상 설계 시스템의 개발)

  • 정진평;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

The Effect of Cr and Mo Additions on the Improvement in Microstructural Homogeneity and Mechanical Properties of Ni-containing P/M Steels

  • Wu, Ming-Wei;Hwang, Kuen-Shyang;Huang, Hung-Shang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.931-932
    • /
    • 2006
  • The microstructures of Ni-containing P/M steels produced by admixed powders or diffusion alloyed powders are usually heterogeneous. To improve the microstructure homogeneity, the effects of Mo and Cr additions in the prealloyed powder form were examined. The results showed that the microstructural homogeneity was improved and superior mechanical properties were achieved with increases in the alloy content, particularly for the Cr. Such a beneficial effect was attained due to the reduction of the repelling effect between Ni and C, as was demonstrated through thermodynamic analysis using the Thermo-Calc software.

  • PDF

On the Properties of Nanostructured Cu-Pb Alloys Prepared by Mechanical Alloying (기계적 합금화 방법으로 제조된 Nanostructured Cu-Pb 합금의 물성 연구)

  • 김진천
    • Journal of Powder Materials
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 1996
  • Nanostructured Cu-Pb powders were synthesized by mechanical alloying process. The variation of powder characteristics with mechanical alloying time was investigated by x-ray diffraction, differential scanning calorimetry, SEM and TEM. An electrical resistivity of the hot pressed specimens was also measured by using the nanovoltmeter. It was shown that mechanical alloying for 12 hours leads to a homogenization and a grain refinement to the nanometer scale under 20 nm. The mechanically alloyed Cu-Pb alloys represented the enhanced solid solubility of 10wt% Pb in the Cu matrix. The monotectic temperature of nanostructured Cu-Pb alloy decreased from equilibrium state of 955$^{\circ}C$ to 855$^{\circ}C$ due to reduced grain size effect. The analysis of electrical resistivity showed that the hot pressed MA Cu-5wt% Pb compact existed as a solid solution.

  • PDF