• Title/Summary/Keyword: Homogeneous liquid

Search Result 242, Processing Time 0.025 seconds

A Study on the Liquid Crystal Orientation Characteristics of the Inorganic NiOx Film with Aligned Nanopattern Using Imprinting Process (무기막 NiOx의 정렬 패턴 전사를 이용한 액정의 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.357-360
    • /
    • 2019
  • We demonstrate an alignment technology using an imprinting process on an inorganic NiOx film. The aligned nanopattern was fabricated on a silicon wafer by laser interference lithography. The aligned nano pattern was then imprinted onto the sol-gel driven NiOx film using an imprinting process at an annealing temperature of $150^{\circ}C$. After the imprinting process, parallel grooves had been formed on the NiOx film. Atomic force microscopy and water contact angle measurements were performed to confirm the parallel groove on the NiOx film. The grooves caused liquid crystal alignment through geometric restriction, similar to grooves formed by the rubbing process on polyimide. The liquid crystal cell exhibited a pretilt angle of $0.2^{\circ}$, which demonstrated homogeneous alignment.

The Effect of Injection Timing and Cavity Geometry on Fuel Mixture Formation in a Central Injected DI Gasoline Engine (중앙 분사방식의 직분식 가솔린 기관에서 연료 혼합기 형성에 미치는 분사시기와 캐비티 형상의 영향)

  • 김태안;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • This study was performed to investigate the behavior of liquid and vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The conventional engine was modified as Central Injected DI gasoline engine with swirl motion. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze spray behavior and fuel distribution inside of cylinder using exciplex fluorescence method. Piston cavity geometries were set by Type S, M and L. The results obtained are as follows. In the spray formation after SOI, the cone angle and width of the spray were decreased at late injection timing. With a fuel injection timing of BTDC $180^{\circ}C$, fuel was not greatly affected in a piston cavity but generally distributed as homogeneous mixture in the cylinder. With a fuel injection timings of BTDC $90{\circ}C$ and $60^{\circ}C$, fuel mixture was widely distributed in near the cavity center. As a injection timing was late in the compression stroke, residual width of fuel mixture was narrow in proportion to piston cavity.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Statistical Modeling of Pretilt Angle Control on the Homogeneous Polyimide Surface as a Function of Rubbing Strength and Baking Temperature

  • Kang Hee-Jin;Lee Jung-Hwan;Hwang Jeoung-Yeon;Yun Il-Gu;Seo Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, the response surface modeling of the control of the pretilt angle in the nematic liquid crystal on the homogeneous polyimide surface with different surface treatment is investigated. The pretilt angle is one of the main factors to determine the alignment of the liquid crystal display. The pretilt angle is measured to analyze the variation of the characteristics on the various process conditions. The rubbing strength and the hard baking temperature are considered as input factors. After the design of experiments is performed, the process model is then explored using the response surface methodology. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State (반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발)

  • 강충길;김현우;김영도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.581-593
    • /
    • 1990
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by strirring of Al7075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semi-solid alloy. The possibility o homogeneous fiber-reinforce aluminum alloy by addition of $Al_{2}$O$_{3}$ short fibers with vigorous agitation was investigated. The billet of composite materials was fabricated by squeeze casting, and homogeneous dipersion state of fibers in billet of fabricated metal matrix composites was observed. A slurry of semi-solid short fiber metal matrix composites is used in the direct rolling process, and this process showed the fabrication possibility of metal matrix composite sheets. The fabricated sheet was tested regarding vickers hardness, elongation and micro-structure. It has become clear that mashy state processing and working are very useful to obtain parts of composites material closed to near net shape.

CFD Validation of Solid-Liquid Two-Phase flow for Analysis of Drilling Fluid Flow Characteristics (이수의 유동 특성 분석을 위한 고체-액체 2상 유동의 전산유체역학적 유효성 검토)

  • Choi, Yong-Seok;Park, Jae-Hyoun;Bae, Jae-Hwan;Lee, Bong-Hee;Kim, Jeong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.611-618
    • /
    • 2018
  • In this study, numerical analysis of solid-liquid two-phase flow was conducted as a preliminary step to analyze the flow characteristics of drilling fluid using the commercial CFD code, ANSYS CFX 14.5. The homogeneous model and separated flow model were used to simulate solid-liquid two-phase flow phenomena. In the separated flow model, Gidaspow's drag force model was applied with the kinetic theory model was applied for solid particles. The validity of the numerical model used in this study was verified based on the published experimental results. Numerical analysis was carried out for volume fractions of 0.1 to 0.5 and velocities of 1 to 5 m/s in a horizontal tube with a diameter of 54.9 mm and a length of 3 m. The Pressure drop and volume fraction distribution of solid particles were confirmed. The pressure drop was predicted using the homogeneous model and separated flow model within the MAE of 17.04 % and 8.98 %, respectively. A high volume fraction was observed in the lower part of the tube, and the volume fraction decreased toward the upper part. As velocity increased, variations in volume fraction distribution at varying heights were decreased, and the numerical results predicted these flow characteristics well.

Homogeneous Liquid Crystal Alignment on Anisotropic YSnO Surface by Imprinting Method (임프린팅법을 이용한 YSnO 박막의 표면 이방성 획득과 액정 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.21-24
    • /
    • 2020
  • We investigated a solution-driven Yttrium Tin Oxide (YSnO) film that was imprinted using a parallel nanostructure as a liquid crystal (LC) alignment layer. The imprinting process was conducted at the annealing temperature of 100℃. To evaluate the effect of this process, we conducted surface analyses including atomic force microscopy (AFM). During imprinting, the surface roughness was reduced, and anisotropic characteristics were observed. Planar LC alignment was observed at a pretilt angle of 0.22° on YSnO film. Surface anisotropy induced by imprinting method forces LC to align along the direction of the parallel nanostructure, which is an alternative to conventional polyimide treated using a rubbing process.

Study on the realtionship between phthalic and naphthalenic polyimide structures and the photo-induced molecular orientaion of liquid crystals on polyimides

  • Cho, Ki-Yun;Sung, Shi-Joon;Hah, Hyun-Dae;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1167-1168
    • /
    • 2004
  • Polarized ultraviolet irradiation techniques have been developed recently to produce alignment of liquid crystals (LC). Because of the excellent thermal stability and the alignment ablility of polyimides, polyimides has attracted considerable research interest for the photoinduced alignment layer. Hasegawa and Taira confirmed homogeneous alignment of LC by the decompostion of a polyimide induced by lineraly ultra-violet polarized light. It was reported that ultraviolet visible absorption spectra of a polyimide alignment film showed a remarkable change upon irradiation. In this study, we synthesized phthalic polyimide and a naphthalenic polyimide in order to investigate the effect of the polyimide structure. Some difference in terms of the photo-induced molecular orientaion of liquid crystals were observed with the polyimide structure.

  • PDF

Controllable Pretilt Angles for Liquid Crystal Molecules using a Rubbing Treated Mixture Layer

  • Kim, Dae-Hyun;Park, Hong-Gyu;Kim, Young-Hwan;Kim, Byoung-Yong;Ok, Chul-Ho;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.140-142
    • /
    • 2009
  • We have investigated the continuous pretilt angle generation for liquid crystals using a rubbing treated mixture layer consisting of homogeneous and homeotropic polyimides. Various pretilt angles in the range from $0^{\circ}$ to $60^{\circ}$ were achieved as a function of the concentration of homeotropic PI. The transmittance characteristics used to measure the pretilt angle showed that the pretilt angles were measured with a high reliability. We observed uniform liquid crystal alignment on the rubbing treated mixture layer.