• 제목/요약/키워드: Homogeneous composite

검색결과 265건 처리시간 0.023초

균일 침전법에 의한 MWNT/SnO2 나노복합음극재의 제조 (Preparation and Characteristics of MWNT/SnO2 Nano-Composite Anode by Homogeneous Precipitation Method)

  • 한원규;좌용호;오승탁;조진기;강성군
    • 한국재료학회지
    • /
    • 제18권4호
    • /
    • pp.187-192
    • /
    • 2008
  • Multi-walled carbon nanotube (MWNT)/$SnO_2$ nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with $SnCl_2$ precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at $400^{\circ}C$, $Sn_6O_4(OH)_4$ was fully converted to $SnO_2$ phases. TEM observations showed that most of the $SnO_2$ nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-$SnO_2$ electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.

분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method)

  • 이성희
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

복합센서 케이스용 알루미늄 다이캐스팅(ADC 12) 합금의 특성평가 (Properties Evaluation on Aluminum for Die-casting(ADC 12) to Packing Case of Composite Sensor)

  • 손재환;오상균;김동배;한창우
    • 한국산업융합학회 논문집
    • /
    • 제9권2호
    • /
    • pp.141-145
    • /
    • 2006
  • In case of sense case manufactured by method of outage capacity, sensitivity is declined by outside effect and method of the photo electricity has a problem in transmission. therefore, packing case of composite sense should be developed to improve such a problem about influence of outside environment and its property evaluation has been performed. Mechanical property and result of analysis & test evaluation of Mat'l on aluminum die-casting(ADC 12type) Mat'l developed are as following. Tensile test piece, No. 4 of KS B 0801, has been applied to mechanical property test of Mat'l and It has been tested by method of metal mat'l tensile test(KS B 0802 : 2003). It can be found that physical property to KS(Korea Standard) is excellent. and homogeneous mechanical property appears. Test of Mat'l analysis has been performed by using OE Spectrometer, according to ASTM E 1251 : 1994 regulation. Consequently, good and homogeneous component contents classified by element to standard, except for Fe, have been obtained with coordination of Fe content as below 1.3% from composition standard of Aluminum Die-casting.

  • PDF

반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발 (Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State)

  • 강충길;김현우;김영도
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.581-593
    • /
    • 1990
  • 본 연구에서는 교반기술에 의하여 얻어진 반응고상태의 금속에 단섬유를 첨가 하여 복합재료를 제조하였다. 그리고 제조되어진 복합재료에 있어서 섬유의 분산상 태및 기지재와의 접합관계를 조사하여 압연가공에 필요한 반응고상태인 금속복합재료 의 제조방법을 확립하였다. 균일하게 분실되어진 반용융상태의 단섬유강화형 금속복 합재료를 직접 압연하여 박판을 제조할 수 있는 가능성을 검토하였으며, 또한 제조되 어진 박판의 인장시험에 의하여 기계적 성질을 조사하였다.

Development of Petroleum-Based Carbon Composite Materials Containing Graphite/silicon Particles and Their Application to Lithium Ion Battery Anodes

  • Noh, Soon-Young;Kim, Young-Hoon;Lee, Chul-Wee;Yoon, Song-Hun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.116-123
    • /
    • 2011
  • Herein, a novel preparation method of highly homogeneous carbon-silicon composite materials was presented. In contrast to conventional solvent evaporation method, a milled silicon-graphite or its oxidized material were directly reacted with petroleum-derived pitch precursor. After thermal reaction under high pressure, pitch-graphite-silicon composite was prepared. Carbon-graphite-silicon composite were prepared by an air-oxidization and following carbonization. From energy dispersive spectroscopy, it was observed that small Si particles were highly embedded within carbon, which was confirmed by disappearance of Si peaks in Raman spectra. Furthermore, X-ray diffraction and Raman spectra revealed that carbon crystallinity decreased when the strongly oxidized silicon-graphite was added, which was probably due to oxygen-induced cross-linking. From the anode application in lithium ion batteries, carbon-graphite-silicon composite anode displayed a high capacity ($565\;mAh\;g^{-1}$), a good initial efficiency (68%) and an good cyclability (88% retention at 50 cycles), which were attributed to the high dispersion of Si particles within cabon. In case of the strongly oxidized silicongraphite addtion, a decrease of reversible capacity was observed due to its low crystallinity.

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Cho, Sung-Hun;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.439-443
    • /
    • 2010
  • Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.

Thixoforging을 이용한 중공형 금속복합재료 부품의 성형공정에 있어서 결함예측 (Defect Prediction in Part Fabrication Process of Metal Matrix Composites by Thixoforging Process)

  • 윤성원;김병민;강충길
    • 소성∙가공
    • /
    • 제12권2호
    • /
    • pp.102-109
    • /
    • 2003
  • In the manufacturing process of metal matrix composites parts, thixoforging is one of the most effective forming processes. The major purpose of the current study is to provide the proper conditions such as the die shape, the forging velocity, the forging time, the forging pressure and reinforcement injection velocity and pressure on various defects in thixoforged cylinder liner, filling tests were performed by MAGMA S/W. In order to evaluate the effectiveness of the calculated conditions which is given by computer aided engineering, A357, A380 and SiC$_{p}$/A380 cylind~5$mu extrm{m}$r liner were fabricated under the calculated conditions. SiC$_{p}$/A380 composite billets were fabricated by both the mechanical stirring and electrical magnetic stirring process. Incase fo SiC$_{p}$/A380 composite cylinder liner, reinforcement distribution and effect of reinforcement(SiC$_{p}$) content(10~20 vol. %)and size(5.5~14${\mu}{\textrm}{m}$) on the mechanical properties were investigatedstigated.

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF