• Title/Summary/Keyword: Homogeneous Solution

Search Result 561, Processing Time 0.016 seconds

Verification of Radiation Therapy Planning Dose Based on Electron Density Correction of CT Number: XiO Experiments (컴퓨터영상의 전자밀도보정에 근거한 치료선량확인: XiO 실험)

  • Choi Tae-Jin;Kim Jin-Hee;Kim Ok-Bae
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • This study peformed to confirm the corrected dose In different electron density materials using the superposition/FFT convolution method in radiotherapy Planning system. The experiments of the $K_2HPO_4$ diluted solution for bone substitute, Cork for lung and n-Glucose for soft tissue are very close to effective atomic number of tissue materials. The image data acquisited from the 110 KVp and 130 KVp CT scanner (Siemes, Singo emotions). The electron density was derived from the CT number (H) and adapted to planning system (Xio, CMS) for heterogeneity correction. The heterogeneity tissue phantom used for measurement dose comparison to that of delivered computer planning system. In the results, this investigations showed the CT number is highly affected in photoelectric effect in high Z materials. The electron density in a given energy spectrum showed the relation of first order as a function of H in soft tissue and bone materials, respectively. In our experiments, the ratio of electron density as a function of H was obtained the 0.001026H+1.00 in soft tissue and 0.000304H+1.07 for bone at 130 KVp spectrum and showed 0.000274H+1.10 for bone tissue in low 110 KVp. This experiments of electron density calibrations from CT number used to decide depth and length of photon transportation. The Computed superposition and FFT convolution dose showed very close to measurements within 1.0% discrepancy in homogeneous phantom for 6 and 15 MV X rays, but it showed -5.0% large discrepancy in FFT convolution for bone tissue correction of 6 MV X rays. In this experiments, the evaluated doses showed acceptable discrepancy within -1.2% of average for lung and -2.9% for bone equivalent materials with superposition method in 6 MV X rays. However the FFT convolution method showed more a large discrepancy than superposition in the low electron density medium in 6 and 15 MV X rays. As the CT number depends on energy spectrum of X rays, it should be confirm gradient of function of CT number-electron density regularly.

  • PDF