• 제목/요약/키워드: Homogeneous Small Grain

Search Result 15, Processing Time 0.022 seconds

Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics (Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성)

  • Cha, Yu-Joung;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Wu-Young;Kim, Dae-Joon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation (옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성)

  • Han, In-Dong;Lim, Kwang-Young;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.666-672
    • /
    • 2006
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.

Acoustic Properties of Gassy Sediments: Preliminary Result of Jinhae Bay, Korea (가스함유퇴적물의 음향특성: 한국 진해만의 예비결과)

  • Kim, Gil-Young;Kim, Dae-Choul;Yeo, Jung-Yoon;Yoo, Dong-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.33-38
    • /
    • 2007
  • Compressional wave velocity and shear wave velocity were measured for gassy sediments collected from Jinhae Bay, Korea. To distinguish inhomogeneities of gassy sediments, Computed Tomography (CT) was carried out for gassy sediment using CT Scanner. The cored sediments are composed of homogeneous and soft mud (greater than $8{\Phi}$ in mean grain size) containing clay content more than 50%. In depth interval of gassy sediments, compressional wave velocity is significantly decreased from 1480m/s to 1360m/s, indicating that the gas greatly affects compressional wave velocity due to a gas and/or degassing cracks. Shear wave velocity shows a slight increasing pattern from ${\sim}55\;m/s$ in the upper part of the core to ${\sim}58\;m/s$ at 320 cm depth, and then decreases to ${\sim}54\;m/s$ in the lower part of the core containing a small amount of gas. But shear wave velocity in the gassy sediments is slightly greater than that of non-gassy sediments in the upper part of the core. Thus, the Vp/Vs ratio is decreased (from 30 to 25) in gas charged zone. The Vp/Vs ratio is well correlated with shear wave velocity, but no correlation with compressional wave velocity. This suggests that low concentrations of gas have little affects on shear wave velocity. By CT images, the gas in the sediments is mostly concentrated around inner edge of core liner due to a long duration after sediment collection.

Evolution of Microstructure in Al-4.0%Zn-1.5%Mg-0.9%Cu Alloy by Extrusion, Rolling and Heat Treatment (Al-4.0%Zn-1.5%Mg-0.9%Cu 합금의 압출, 압연 및 열처리에 따른 미세조직 변화)

  • Kwon, Hyeok Gon;Park, Jong Moon;Oh, Myung Hoon;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, microstructural changes due to extrusion, rolling and heat treatment were studied to fabricate Al-4.0wt%Zn-1.5wt%Mg-0.9wt%Cu alloys with homogeneous microstructure suitable for metal cases of smart phones and electronic products fabricated through plastic working. After extrusion microstructure and texture were developed very differently on the surface and inside. Inside, coarse grains were formed and a strong Cube component orientation was developed. On the surface, a weak texture was developed with small grains. After 72% cold rolling the intensity of the Cube component orientation was lower, and uniform texture was developed in all the layers and the R-value was uniformly predicted. After recrystallization, the grain size difference between at the surface and the inside is smaller, when 72% rolling was performed, indicating that a uniform structure is formed. Texture develops almost randomly after recrystallization and exhibits uniform R-values at all layers.

Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca ((Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과)

  • Hwang, Y.J.;Kim, G.Y.;Kim, K.S.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.