• Title/Summary/Keyword: Homobimetallic Complex

Search Result 2, Processing Time 0.01 seconds

Novel Counter Ion Effect on the Disruption of the Homobimetallic Anion,$ (\eta^5-MeCp)Mn(CO)_2Mn(CO)_5-M^+ (M^+=Na^+, PPN^{+a}) by PR_3 (R=C_6H_5,\; C_2H_5,\; OCH_3)$

  • 박용광;김선중;이창환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.462-466
    • /
    • 1998
  • The homobimetallic anion, $({\eta}^5-MeCp)Mn(CO)_2Mn(CO)_5-M^+\; (M^+=Na^+, PPN^+$) was disrupted by $PR_3\;(R=C_6H_5,\;C_2H_5,\;OCH_3)$ in THF at various temperatures (r.t. ∼65℃) under the pseudo first order reaction conditions where excess of $PR_3$ was employed under a nitrogen atmosphere. For the reaction involving $PPN^+$ analog, Mn-Mn heterolytic cleavage occurred, leading to $PPN^+Mn(CO)_5^-\; and \;({\eta}^5-MeCp)Mn(CO)_2PR_3$ as products; however, in case of $Na^+\; analog,\; Na^+$ seems to play a novel counter ion effect on the disruption reaction by transferring one terminal CO from the $Mn(CO)_5$ moiety on to the $({\eta}^5-MeCp)Mn(CO)_2$ of the corresponding homobimetallic complex, eventually resulting in $Na^+Mn(CO)_4PR_3^-\;and\;({\eta}^5-MeCp)Mn(CO)_3$. This reaction is of overall first order with respect to [homobimetallic complex] with the activation parameters (ΔH≠=23.0±0.7 kcal/mol, ΔS≠= - 8.7±0.8 e.u. for $Na^+$ analog; ΔH≠=28.8±0.4 kcal/mol, ΔS≠=15.7±0.6 e.u. for $PPN^+$ analog reaction).

Kinetic Studies on the Reaction of the Homobimetallic Anion, M+5-MeCp)Mn(CO)2Mn(CO)5-(M+=Na+, PPN+) with Allyl Chloride (동종이핵착물인 M+5-MeCp)Mn(CO)2Mn(CO)5-(M+=Na+, PPN+)와 염화알릴간의 반응에 대한 반응속도론적 연구)

  • Park, Yong-Kwang;Yun, Dong-Shin
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.473-482
    • /
    • 2004
  • The homobimetallic anion, $M^+({\eta}^5-MeCp)Mn(CO)_2Mn(CO)_5^-(M^+=Na^+,\;PPN^+)$was disrupted by CH2CHCH2Cl in THF at various temperatures ($20^{\circ}C~50^{\circ}C$) under the pseudo 1st order reaction conditions where excess of allyl chloride was employed under a nitrogen atmosphere. This homobimetallic anion seems to be involved in a concerted reaction mechanism in which a four-centered transition state is proposed. After undergoing the transition state, this reaction eventually leads to (MeCp)Mn$(CO)_3$ on addition of CO and $({\eta}^1-allyl)Mn(CO)_5$, respectively. However, in case of $Na^+$ analog, $Na^+$ may play a novel counter ion effect on the disruption reaction either by transferring one terminal CO from the $Mn(CO)_5$ moiety on to the $({\eta}^5-MeCp)Mn(CO)_2$of the corresponding homobimetallic complex, eventually resulting in $({\eta}^5-MeCp)Mn(CO)_3$ or through the interaction between $Na^+$ and the leaving group (Cl) of allyl chloride. This reaction is of overall second order with respect to homobimetallic complex with the activation parameters (${\Delta}H^{\neq}=17.15{\pm}0.17kcal/mol,\;{\Delta}S^{\neq}=-9.63{\pm}0.10$ e.u. for $Na^+$ analog; ${\Delta}H^{\neq}=22.13{\pm}0.21 kcal/mol,\;{\Delta}S^{\neq}=9.74{\pm}0.19$ e.u. for $PPN^+$ analog reaction).