• 제목/요약/키워드: Homeobox gene

검색결과 54건 처리시간 0.026초

Presence of Proboscipedia and Caudal Gene Homologues in a Bivalve Mollusc

  • Carpintero, Pablo;Pazos, Antonio Juan;Abad, Marcelina;Sanchez, Jose Luis;De La Luz Perez-Paralle, Maria
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.625-628
    • /
    • 2004
  • Homeobox genes encode a family of transcription factors that have essential roles in regulating the development of eukaryotes. Although they have been extensively studied in different phyla, relatively little is known about homeobox-containing genes and their function in molluscs. In this study, we used a polymerase chain reaction to investigate homeobox genes in the bivalve mollusc Pecten maximus. Four different homeobox sequences were identified; two were homologues of the non-Hox cluster gene caudal and the two remaining sequences had a significant homology to the ANT-C gene proboscipedia. These sequences represent the first cad and pb homologues isolated from a member of the class Bivalvia, phylum Mollusca.

Rhox in mammalian reproduction and development

  • Lee, Sang-Eun;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제40권3호
    • /
    • pp.107-114
    • /
    • 2013
  • Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, ${\alpha}$, ${\beta}$, and ${\gamma}$ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into ${\alpha}$ (Rhox1-4), ${\beta}$ (Rhox5-9), and ${\gamma}$ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.

Lin28 regulates the expression of neuropeptide Y receptors and oocyte-specific homeobox genes in mouse embryonic stem cells

  • Park, Geon Tae;Seo, You-Mi;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권2호
    • /
    • pp.87-93
    • /
    • 2012
  • Objective: Lin28 has been known to control the proliferation and pluripotency of embryonic stem cells. The purpose of this study was to determine the downstream effectors of Lin28 in mouse embryonic stem cells (mESCs) by RNA interference and microarray analysis. Methods: The control siRNA and Lin28 siRNA (Dharmacon) were transfected into mESCs. Total RNA was prepared from each type of transfected mESC and subjected to reverse transcription-polymerase chain reaction (RT-PCR) analysis to confirm the downregulation of Lin28. The RNAs were labeled and hybridized with an Affymetrix Gene-Chip Mouse Genome 430 2.0 array. The data analysis was accomplished by GenPlex 3.0 software. The expression levels of selected genes were confirmed by quantitative real-time RT-PCR. Results: According to the statistical analysis of the cDNA microarray, a total of 500 genes were altered in Lin28-downregulated mESCs (up-regulated, 384; down-regulated, 116). After differentially expressed gene filtering, 31 genes were selected as candidate genes regulated by Lin28 downregulation. Among them, neuropeptide Y5 receptor and oocyte-specific homeobox 5 genes were significantly upregulated in Lin28-downregulated mESCs. We also showed that the families of neuropeptide Y receptor (Npyr) and oocyte-specific homeobox (Obox) genes were upregulated by downregulation of Lin28. Conclusion: Based on the results of this study, we suggest that Lin28 controls the characteristics of mESCs through the regulation of effectors such as the Npyr and Obox families.

Homeobox Gene (OSH1) Expression in Embryonic Mutants of Rice (Oryza sativa L.)

  • Hong, Soon-Kwan;Lee, Sang-Lyung;Shin, Young-Boum;Yoon, Kyung-Min;Kim, Nam-Soo
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.81-86
    • /
    • 1998
  • Recent identification and characterization of plant homeobox genes suggest that they play important roles in morphogenetic events. OSH1, one of the rice homeobox genes, is thought to be related to organ development since the changes of OSH1 gene expression cause morphological abnormalities of leaves by the ectopic expression and is expressed during early embryogenesis. In this experiment, the expression pattern of OSH1 was analyzedinmutants by in situ hybridization, and OSH1's potential as a molecular marker was explored. Region-specific expression of OSH1 during early embryogenesis shows that OSH1 could be used as a molecular marker for characterizing embryo mutants. Although several organless and shootless mutants showed normal expression of OSM1, some mutants exhibited abnormal expression patterns. In a minute organless cle1-1 embryo whose epidermis resembled morphologically the epithelium of scutellum, OSH1 expression was limited to a small basal region. This expression pattern suggests the gross deletion of the basal part. In a radicleless mutant, odm115, OSH1 expression was detected in a basal region instead of subcentral region of the ventral side. Together with other characteristics (short embryo and normal adventitious roots), odm115 was estimated to be derived from the deletion of basal region. Among five shootless mutants, three showed normal expression of OSH1. In the shl2 embryo, no expression of OSH1 was observed. In the shl1 embryo, however, OSH1 expression was extended to a dorsal side, indicating that SHL2 might be related to dorsoventral patterning. The above results of in situ hybrydization clearly indicate that OSH1 can be utilized as a marker for characterizing gene functions of embryo mutants.

  • PDF

Overexpression and Clinicopathological Significance of Homeobox Gene Quox-1 in Oral Squamous Cell Carcinoma

  • Zhu, Fan;Li, Jian;Li, Wen-Xin;Liu, Zhong-Chun;Long, Xing
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.671-675
    • /
    • 2004
  • The expression and clinicopathological significance of Quox-1 gene was studied in oral squamous cell carcinoma (OSCC). Immunocytochemistry and western blot analysis were used to examine the different expressions of Quox-1 protein in 114 OSCC specimens, 34 oral epithelial dysplasia specimens, and 16 normal oral mucosa specimens. RT-PCR and virtual Northern Blot were also used to examine the expression of Quox-1 mRNA. It was found that Quox-1 was not expressed in normal epithelium. However, as dysplastic lesions progressed Quox-1 expression increased (p < 0.01), and Quox-1 expression was not significantly different between severe dysplasia and highly differentiated OSCCs (p > 0.05). As the degree of differentiation decreased, Quox-1 positivity increased in OSCC (p < 0.01), and the rate of Quox-1 (81.58%) positivity in OSCC was higher than that in normal oral mucosa (p < 0.01). Our findings imply that the positive expression of Quox-1 is correlated with the histological classification of OSCCs. Thus, the expression of Quox-1 in OSCC may serve as a significant predicting factor of proliferative status and malignant degree, and it may also be a biological detection marker of oral mucosas initial cancer and of OSCC.

3세대 DNA 염기서열 분석과 Hi-C기술을 이용한 꼬막 게놈의 유전체 연구 (Chromosomal Assembly of Tegillarca granosa Genome using Third-generation DNA Sequencing and Hi-C Technology)

  • 김진무;이승재;조은아;최은경;조민주;신소령;이정식;박현
    • 한국해양생명과학회지
    • /
    • 제6권2호
    • /
    • pp.97-105
    • /
    • 2021
  • 꼬막은 해양 어업으로써 아시아 전 지역에 있어서 중요한 수산자원 중 하나이다. 하지만, 공장의 산업화, 해양 환경오염, 그리고 지구 온난화로 인해 해양 어업 생산량이 급격히 떨어졌다. 우리나라 남해안의 주요 수산자원인 꼬막의 유전적 특성을 파악하기 위하여 꼬막의 전장유전체를 해독하고 염색체 서열을 규명하였다. 915.4 Mb의 게놈을 조립하였고, 19개의 염색체 유전자 서열을 식별하였다. 꼬막의 유전체에서 25,134개의 유전자들을 확인하였고, 그 중에 22,745개의 유전자들에 대한 기능을 확인했으며, 4,014개의 유전자들에 대한 KEGG pathway를 분석하였다. 꼬막유전체와 8종의 다른 패류와 비교유전체 분석을 통하여 확장/감소(gene gain and loss) 분석을 수행한 결과, 725개의 유전자군의 확장과 479개의 유전자군의 감소를 확인하였다. 꼬막의 homeobox 유전자 클러스터는 촉수담륜동물 내에서 잘 보존된 유전자 구조를 보였다. 또한, 꼬막은 3개의 hemoglobin 유전자들이 피조개의 hemoglobin과 높은 유사성을 보였다. 꼬막의 전장유전체 정보를 통해 꼬막의 환경 적응과 진화의 유전적 특성과 생리적 특성뿐만 아니라, 꼬막 양식의 효율성을 높이는 양식산업에 널리 이용될 수 있는 유전적 정보를 제공할 것이다.