• 제목/요약/키워드: Hollow Fiber Reactor

검색결과 35건 처리시간 0.02초

A Submerged Membrane Bioreactor with Anoxic-oxic Recycle for the Treatment of High-strength Nitrogen Wastewater

  • Shim, Jin-Kie;Yoo, Ik-Keun;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.32-38
    • /
    • 2001
  • Using the hollow fiber membrane module in a lab-scale membrane bioreactor, the anoxic- oxic (AO) process for nitrogen removal was operated for about one year. For the influent wastewater containing 1,200-1,400 mg $1^{-1}$ of CODcr and 200-310 mg $1^{-1}$ of nitrogen, this process achieved a high quality effluent of less than 30 mgCOD $liter^{-1}$ and 50 mgN $liter^{-1}$. The removal rate of organics was above 98% at a loading rate larger than 2.5 kgCOD $m^{-3}$$d^{-1}$. When the internal recycle from the oxic to the anoxic reactor changed room 2n to 600% rout the influent flow rate, the nitrogen removal rate increased from about 70 to 90% at a loading rate of 0.4 kgT-N m-s d-1. The initial increase of transmembrane pressure (TMP) was observed after a 4-month operation while maintaining the flux and MLSS concentration at 7-9 1 $m^2$ $h^{-1}$ and 6,000-14,000 mg $1^{-1}$, respectively. The TMP could be maintained below 15 cmHg for an 8-month operation. The chemical cleaning with an acid followed by an immersion in an alkali solution gave better cleaning result with the membrane operated for 10 month rather than that only by an alkali immersion.

  • PDF

PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가 (Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting)

  • 이태섭;김영진;함상우;홍승관;박병주;신용일;정인식
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.

연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해 (Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor)

  • 김세권;변희국;강태중;송대진
    • 한국수산과학회지
    • /
    • 제26권2호
    • /
    • pp.120-132
    • /
    • 1993
  • 어류 가공시 부산물로 얻어지는 어피를 효율적으로 이용하고자 알칼리 전처리법으로 각시가자미 피(皮)로부터 제조된 젤라틴을 시료로 하여 연속식 중공사막 반응기를 이용한 젤라틴의 가수분해 최적조건과 중공사막 반응기 장치에서의 효소활성 및 안정성에 미치는 인자에 대하여 검토하였다. 연속식 중공사막 반응기에서 가수분해조건을 보면 효소농도는 0.1mg/ml 이상에서는 가수분해율이 거의 $72\%$ 이상이었다. 기질농도 $1\%$ 이하에서는 $70\%$ 이상의 가수분해율을 나타내었으며, 기질농도가 증가함에 따라 가수분해율이 약간 감소하는 경향이였다. S/E=100(w/w) 이하에서는 거의 $72\%$이상의 가수분해율을 나타내었다. 유출속도가 7.79ml/min일 때 잔류시간은 77분이였으며, 이때의 가수분해율은 $79\%$였다. 중공사막 반응기 장치의 최적조건은 $1\%$ 기질에 대해 효소농도 0.1mg/ml, 유출속도 7.79ml/min, 잔류시간 77분, 반응온도 $55^{\circ}C$에서 기질의 가수분해율은 반응시간 1시간 부근에서 최대값을 나타내었다. 효소활성은 온도 $55^{\circ}C$에서 $50\%$, $25^{\circ}C$에서 $20\%$가 감소되었으며, 막에 의한 효소활성은 3시간 후에 $34\%$ 감소하였다. 막을 통한 효소의 누출은 작동시간 20분에서 최대였으며 작동시간 5시간 이후에는 거의 효소가 누출되지 않았으며, 전체 효소량 중 효소누출량은 $12.95\%$이였다. 막의 fouling 성질은 $10\%$(w/v)기질용액에서 순수에 대한 상대적인 유출속도 감소율(RFR)은 $91\%$였으며 유출속도 재생율은 $92\%$였다. 높은 기질농도 $10\%$에서는 가수분해도가 $89\%$였으며, 그 이상의 기질농도에서는 $75\%$였다. 젤라틴에 대한 trypsin의 반응속도 상수인 $K_m$$V_{max}$는 회분식에서 각각 0.668mgN/ml, 1.468mgN/ml/min였으나, 연속식에서는 이들의 값이 각각 1.618mgN/ml, 0.347mgN/ml/min였다. 연속식에서 $K_m$값은 1.618mgN/ml으로 회분식의 0.668mgN/ml에 비해 2.4배 정도 큰 반면 $V_{max},\;K_2$는 매우 작았다. 회분식과 연속식에서 최적조건하에서 젤라틴을 가수분해하였을 때 효소 mg당 생산하는 가수분해물은 각각 87.58mg및 378.85mg으로 회분식에 비해 생산량이 4배 이상이었다.

  • PDF

SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성 (Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes)

  • 정진희;윤영내;이슬기;한영립;이승철;최영익
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

중공사 막반응기에서 단백질용액의 한외여과시 유출속도에 미치는 Fouling의 영향 (Effects of Fouling on Permeate Flux during Ultrafiltration of Protein Solutions in a Hollow-Fiber Membrane Reactor)

  • 김세권;변희국이환근하진환
    • KSBB Journal
    • /
    • 제9권5호
    • /
    • pp.483-491
    • /
    • 1994
  • 중공사막 반응기를 이용한 유용단백질의 분리 빛 효소로 분해된 단백칠 가수분해물의 분자량별 분획 에 있어서 발생되는 fouling 현상은 투과유출속도의 감소와 막반응기의 효율적인 이용에 문제가 되는 주 된 원인이다. 따라서 본 연구에서는 중공사막(MW 10,000 cut off)반응기를 이용하여 단백질(gelatin, milk casein 및 bovine serum albumin)을 연속적으 로 가수분해할 때 가수분해물의 한외여과에 있어 발생되는 fouling을 알아 보기 위해 막반응기의 작동 시간, 단백질 용액의 농도, 온도 빛 pH 변화에 따른 투과유출속도로 측정하였으며, 아울러 효소 첨가에 의한 생성물의 투과유출속도도 효소무첨가구와 비교 검토하였다. Gelatin용액의 초기 투과유출속도는 $19.3\ell/m^2.hr$로 작동시간에 관계없이 거의 일정하였으며, casem 빛 albumin용액은 각각 작동시간 60 분 후에 초기 투과유출속도의 50% 빛 43%가 감소 하였다. 단백질 용액의 농도 빛 온도의 증가에 따른 투과유출속도는 증가하는 경향을 보였으며, pH 변 화에 따른 투과유출속도는 세 종류의 단백칠 모두­등전점 pH영역에서 가장 낮았다. Alcalase의 첨가 로 인한 gelatin 용액의 투과유출속도는 작동시간 40분까지 초기 투과유출속도에 비해 $7.51\ell/m^2.hr$증가하였으나, 불용성 단백질인 cas em 빛 albumin 용액의 투과유출속도는 초기 투과유출속도에 비해 감소하는 경향이였다. 그러나 효소를 첨가하지 않았 을 경우보다는 향상되었다. 따라서 연속식 재순환 막효소반응기에셔 분해물의 투과유출속도는 단백질의 성질이 변하지 않는 온도범위 내에서 온도의 증가 및 등전점 pH영역을 벗어난 pH로 조정해야 하며, 불용성 단백질의 경우는 가수분해시 미리 단백질을 효소로 엘정시간 처리한 다음 재순환시키면 fouling을 현저하게 감소시킬 수 있다.

  • PDF

고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가 (Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment)

  • 강범희;임경호;이상민
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가 (Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process)

  • 서인석;김연권;김지연;김홍석;김병군;최창규;안효원
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

중력여과 방식의 MBR을 이용한 하수처리에서 HRT 변화에 따른 EPS의 거동과 막오염에 대한 영향 (Behavior and Influence of EPS on Membrane Fouling by Changing of HRT in MBR with Gravitational Filtration)

  • 김시원;곽성진;이의신;홍승모;민경석
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.865-870
    • /
    • 2006
  • The behavior and influence of EPS on membrane fouling by changing of hydraulic retention time was investigated, using lab. scale submerged membrane bio-reactor, which was operated with gravitational filtration and fed supernatant of primary sedimentation in waste water treatment plant as influent. The membrane was adopted micro-filter of polyethylene hollow fiber. EPS was analysed as polysaccharides and protein especially, into soluble and bound EPS separately. The concentration of soluble EPS was increased at short HRT, then membrane fouling was rapidly progressed and flux was depressed. The most of EPS clogged membrane pore were polysaccharides, while protein was important parameter affected on membrane fouling because of it's more accumulating in the more term operating.

침지식 중공사막을 결합한 Dynamic state 하수고도처리공정(KSMBR process)의 개발 및 현장적용평가 (Development and Field Application of the Advanced Wastewater Treatment process (KSMBR) by Hollow Fiber Submerged Membrane)

  • 김지연;서인석;김홍석;김연권;김병군;최창규;안효원;서완석;장문석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.358-363
    • /
    • 2006
  • KSMBR process is dynamic state advanced wastewater treatment applied with Trisectional Aeration (TSA) mode combined with membrane. TSA was remodeled conventional intermittent aeration which was operated nonaeration-aeration. TSA operates nonaeration ($N_1$) - aeration (A) - nonaeration ($N_2$) in Trisectional Aeration Reactor (TAR). Organics of influent could be nearly consumed to denitrification without influence by remained DO in TAR and it could be operated about sludge return ratio of 1Q (influent base). The purpose of this study was to apply KSMBR to the full-scale plant and to evaluate efficiency of nitrogen and phosphorus removal and TSA operation. The result of this study, average CODcr/T-N and CODcr/T-P ratio were 7.8 and 59.6, respectively. BOD, TCODcr, SS, T-N, T-P, E-coli removal efficiency were 98.4, 95.2, 73.0, 69.6, 99.95 %, respectively. KSMBR obtained high removal efficiencies of C, N and P when it applied full-scale plant.