• Title/Summary/Keyword: Hollow Cylinder

Search Result 133, Processing Time 0.026 seconds

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

Numerical Analysis of Dynamic Stress Concentrations in Axisymmetric Problems (축대칭 문제에서의 동적 응력집중 해석)

  • Sim, Woo-Jin;Lee, Sung-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2364-2373
    • /
    • 2002
  • In this paper, the finite element equations for the time-domain numerical analysis of transient dynamic axisymmetric problems are newly presented. which are based on the equations of motion in convolution integral as in the previous paper. A hollow cylinder subjected to a sudden internal pressure is solved first as a benchmark problem and then the dynamic stress concentrations are analyzed in detail far hollow cylinders having inner and outer circumferential grooves subjected to sudden internal or axial loadings, all the computed results are compared with the existing or the computed ones obtained by using the commercial finite element packages Nastran and Ansys to show the validity and capability of the presented method.

Optimal Mounts Design for a Rotation Machine on a Flexible Plate (평판지지 회전기계의 최적마운트 설계)

  • Kim, Joon-Yeop;Lee, Si-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 1989
  • The optimal mounting system for reciprocating comperssor supported on a flexible is designed. Four short hollow rubber cylinders are used as mounting pads, and so the thickness, diameter, height and location of the rubber mounts are considered as design parameters. The optimal mounts parameters which give the smallest force transmittance, are obtained by Constrained Rosenbrock Method.

  • PDF

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

Study on Combustion Characteristics of Pre-combustion Chamber Type Diesel Engine with Different Throat Shape (예연소실식 디젤엔진의 분구 형상 변화에 따른 연소 특성 연구)

  • Choi, Jonghui;Lee, Seungpil;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.116-121
    • /
    • 2017
  • Pre-combustion chamber type indirect diesel engines have different combustion characteristics compared with those of common rail direct injection engine. The CONVERGE, specific engine CFD program, was used to simulate hollow cone spray model and combustion. The air-fuel mixture flow propagating from pre-combustion chamber to cylinder was concentrated at top half and center of the pre-combustion chamber throat. Stronger mixture flow was formed at smaller and longer throat cases. As a result, thermal efficiency and fuel consumption were improved for modified throat shape and the soot emission was also reduced.

A Study on Directivity of Optical Fiber Sensor Using the Sagnac Interferometer in Underwater (수중에서 Sagnac 간섭계를 이용한 광섬유 센서의 지향성에 관한 연구)

  • Shin, Dae-Yong;Kwon, Ki-Tae;Lee, Jong-Kil;Lee, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1714-1716
    • /
    • 2002
  • Optical fiber sensor is a subject which has been attracted considerable attention in recent year. Especially, it is being developed for the detection and location of partial discharge in oil-filled transformers. In this paper, we propose and experimentally demonstrate directivity and sensitivity of a hollow cylindrical mandrel sensor. The sound source is a PZT actuator of hollow cylinder type. Several layers of the fiber laminated around the mandrel surface and experiments were performed on three axis modes. The experimental results can be applied to analyze detected signals optimally.

  • PDF

Postbuckling and Damage Analysis of Composite Laminated Hollow Cylinder under Lateral Pressure (횡방향 압력을 받는 복합적층 원통실린더의 좌굴후 거동 및 손상해석)

  • Chongdu Cho;Guiping Zhao;HeonJu Kin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.163-172
    • /
    • 2000
  • The postbuckling behavior and progressive damage of composite laminated cylindrical shell under uniform external pressure were investigated by nonlinear finite element method programming. For the finite element analysis, nine-node 3-D degenerated elements were utilized, and arc-length method including line search was adopted for the iteration and load-increment along postbuckling equilibrium path. As results. buckling load, postbucking behavior, and progressive failure f3r various composite laminated cylindrical shells were discussed.

  • PDF

Analysis of unsteady temperature distribution in a cylinder for rifle barrel disign (원통형 용기의 비정상온도해석)

  • ;;;Lee, Hung Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 1979
  • Temperature distriburion in a hollow chlinder has been analyzed mathematically. Unsteady condition considered assumed a constant heat flux input from the inside. The results are compared with experimental results of surface temperature rise of a gun barrel during continuous firing. Their agreements are acceptable. Effects of various dimensionless parameters on the surface temperature rise are discussed. For small Biot numbers, the external survface temperature approaches more rapidly to the steady temperature. Temperature difference between internal and external surfaces becomes greater for small Biot number. Steady solution assumed that the gas temperature inside the cylinder varies periodically. Relative amplitude and phase angles between the gas temperature and the internal or external surface temperature are obtained. Phase angles become smaller for large radiancy of gas temperature variation, small external Biot number, or large internal biot number. Relative amplitudes become samller as radiancy of gas temperature variation and internal Biot number become smaller. or external Biot number becomes larger. The solution obtained in this paper can be applied to gun barrels, heat pipes used in heat excangers, and reciprocation engines.

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).