• Title/Summary/Keyword: Holestein

Search Result 2, Processing Time 0.018 seconds

Estimation of Genetic Parameters for Milk Production Traits in Holstein Dairy Cattle (홀스타인의 유생산형질에 대한 유전모수 추정)

  • Cho, Chungil;Cho, Kwanghyeon;Choy, Yunho;Choi, Jaekwan;Choi, Taejeong;Park, Byoungho;Lee, Seungsu
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • The purpose of this study was to estimate (co) variance components of three milk production traits for genetic evaluation using a multiple lactation model. Each of the first five lactations was treated as different traits. For the parameter estimation study, a data set was set up including lactations from cows calved from 2001 to 2009. The total number of raw lactation records in first to fifth parities reached 1,416,589. At least 10 cows were required for each contemporary group, herd-year-season effect. Sires with fewer than 10 daughters were discarded. Lactations with 305d milk yield exceeding 15,000 kg were removed. In total, 1,456 sires of cows were remained after all the selection steps. A complete pedigree consisting of 292,382 records was used for the study. A sire model containing herd-year-season, caving age, and sire additive genetic effects was applied to the selected lactation data and pedigree for estimating (co) variance components via VCE. Heritabilities and genetic or residual correlations were then derived from the (co) variance estimates using R package. Genetic correlations between lactations ranged from 0.76 to 0.98 for milk yield, 0.79~1.00 for fat yield, 0.75~1.00 for protein yield. On individual lactation basis, relatively low heritability values were obtained 0.14~0.23, 0.13~0.20 and 0.14~0.19 for milk, fat, and protein yields, respectively. For the combined lactation heritability values were 0.29, 0.28, and 0.26 for milk, fat, and protein yields. The estimated parameters will be used in national genetic evaluations for production traits.

Development of International Genetic Evaluation Models for Dairy Cattle (홀스타인의 국제유전평가를 위한 모형개발에 관한 연구)

  • Cho, Kwang Hyun;Park, Byoungho;Choi, Jaekwan;Choi, Taejeong;Choy, Yunho;Lee, Seungsu;Cho, Chungil
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was aimed to solve the problems of current national genetic evaluation systems in Korea and its development to pass the verification processes as required by International Bull Evaluation Service (Interbull). This will enable Korea to participate in international genetic evaluation program. A total of 1,416,589 test-day milk records with calving dates used in this study were collected by National Agricultural Cooperative Federation from 2001 to 2009. Parity was limited up to fifth calving and milk production records were adjusted to cumulative 305 day lactation. The pedigree consisted of 2,279,741 animals where 2,467 bulls had 535,409 parents. A newly developed multiple trait model was used in calculation of breeding values for milk yield, milk fat, and protein yield. Data were edited with SAS (version 9.2) and R programs, and genetic parameters were estimated using VCE 6.0. Results showed a continuous increase in genetic potentials, in general, and no remarkable differences were found between performances by parity. Except fat yield, potentials in milk yield and protein yield were well calculated. We found an increased number of daughters per each top ranked 1,000 bulls in recent years of calf births compared to the cases of previous evaluations. Of the bulls ranked top 100 by our new models (multiple-trait models) we found that increased numbers of bulls were included. Of twenty eight bulls born in 2006, twenty bulls born in 2007 and eight bulls born in 2008 that were listed by new models, only 23, 12, and 2 bulls born in respective years were represented on top 100 by old single-trait models. Re-ranking of the daughters or sires by multiple-trait models suggest that this new multiple trait approach should be used for dairy cattle genetic evaluation and seed-stock selection in the future to increase the accuracy of multiple trait selection. Breeding values for these traits should also be calculated by new method for international genetic evaluation.