• Title/Summary/Keyword: Hole Deformation

Search Result 174, Processing Time 0.026 seconds

Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test (보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구)

  • Yun, Y.W.;Kang, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

VORTEX SHEAR VELOCITY AND ITS EROSION IN THE SCOUR HOLE

  • Lee, Hong-Sik;Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Scour hole is formed due to the high shear stress of the jet flow at the outlet of a hydraulic structure and vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion for the design of bed protection. If the vortex erosion continues and reaches to the hydraulic structure, it causes the deformation of the structure itself. To obtain the amount of the vortex erosion, it is necessary to determine the shear velocity of the line vortex in the scour hole was derived by the theory of energy conservation and found to be related to the upstream overflow velocity. The amount of vortex erosion from the scour hole was obtained using entrainment equation for given value of shear velocity. For a design purpose, if the flow velocity at the end of an apron and the properties of bed material are given, the amount of vortex erosion was obtained.

  • PDF

Deformation performance analysis of thin plates based on a deformation decomposition method

  • Wang, Dongwei;Liang, Kaixuan;Sun, Panxu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.453-464
    • /
    • 2022
  • Thin plates are the most common spatially stressed members in engineering structures that bear out-of-plane loads. Therefore, it is of great significance to study the deformation performance characteristics of thin plates for structural design. By constructing 12 basic displacement and deformation basis vectors of the four-node square thin plate element, a deformation decomposition method based on the complete orthogonal mechanical basis matrix is proposed in this paper. Based on the deformation decomposition method, the deformation properties of the thin plate can be quantitatively analyzed, and the areas dominated by each basic deformation can be visualized. In addition, the method can not only obtain more deformation information of the structure, but also identify macroscopic basic deformations, such as bending, shear and warping deformations. Finally, the deformation properties of the bidirectional thin plates with different sizes of central holes are analyzed, and the changing rules are obtained.

Fracture Analysis of Hole Flanging Process for High Strength Steel Sheets (고강도 열연판재의 홀 플랜정시 파단특성연구)

  • 김정운;김봉준;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • Hole flanging experiments are performed on flat circular plates with a hole in the center and the flangeability and fracture behaviors of TRIP steels and ferrite-Bainite duplex steels were examined. In the hole flanging, deformation by lip and petalling occurs when plates are struck by punches of various shapes and high circumferential strains induced in the target material cause radial cracking and the subsequent rotation of the affected plate material in a number of symmetric petals. In all cases, failure of the plate was due to lip fracture that results from multiple localized neckings that take place around the hole periphery where straining is most severe and a somewhat regular pattern was observed in a fracture shape. The neck characteristics in flange formation and the transition from the lip to petal mode at which fracture occurs were compared with two materials.

  • PDF

Soft Mold Deformation of Large-area UV Impring Process (대면적 UV 임프린팅 공정에서 유연 몰드의 변형)

  • Kim, Nam-Woong;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

A Study on the Hole Stability in the U-Grooved Plates (U-groove가 있는 평판재 끝 Hole의 안정성 문제)

  • Kim, Si-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 1983
  • In the stability problem of the U-grooved plate, it has a circular hole, the site of the hole determines some different deformation mode when it was loaded. To determine the optimal position of the circular hole-center which not to get large distortion of the hole itself, in this paper, we studied the distributions of stresses in the neck area between hole and U-groove and the distortion mode of the deformed hole by B.E.M(Boundary Element Method) and compared with experimental results in four cases. For a distributed load, according to the center of the hole moves closer to the U-groove center (c.-c. line), the shape of the circular hole was transformed to the elliptical one(it's major axis perpendicular to the c.-c. line). In this problem, the results by Boundary Element Method was well accorded with Experiments.

  • PDF

An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes (구멍들을 가진 표준 CT 시험편 내에서의 크랙 거동에 대한 해석적 연구)

  • Lee, Jung Ho;Cho, Jae Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.531-537
    • /
    • 2016
  • The damage and fracture of machine or structure are caused by the crack happened from the defect existed at the inside of material. The properties of crack propagation and growth characteristic must be considered because there are many cases at which these cracks are densely existed. Therefore, this study investigates the fracture property due to the position of crack and hole inside the standard compact tension (C. T.) specimen. When the concentrated load is applied eccentrically at the standard C. T. specimen, the fracture mechanical behavior due to the existence or non-existence and the position of hole near crack is investigated. As the result of analysis study, model 3 (in case of the distance of 2mm on the horizontal direction between the end part and hole as the specimen model existed with one hole near the crack) has the maximum deformation, stress and deformation energy of the most values among three models. As the distance between the crack and hole inside the specimen becomes nearer, the maximum stress becomes higher in cases of three models. Apart from the number of holes, it is seen that the maximum stress becomes higher near the crack when the hole exists near the crack inside the specimen. If the hole inside the machine or the mechanical structure is punctured by using the result of this study, it is thought that the occurred breakage or breakdown can be prevented by reducing the fracture stress happened at the specimen.

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

Deformation of a rectangular plate with an arbitrarily located circular hole under in-plane pure shear loading

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.351-363
    • /
    • 2016
  • Exact solutions for stresses, strains, displacements, and the stress concentration factors of a rectangular plate perforated by an arbitrarily located circular hole subjected to in-plane pure shear loading are investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop stresses, strains, and displacements occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the hoop stresses and the stress concentration factors from the present study and those from a rectangular plate with a circular hole under uni-axial and bi-axial uniform tensions and in-plane pure bending moments on two opposite edges.