• Title/Summary/Keyword: Hole Deformation

Search Result 175, Processing Time 0.027 seconds

Thermo-Elastic Analysis, 3-Dimensional Stress Analysis and Design of Carbon/Carbon Brake Disk (탄소/탄소 브레이크 디스크의 열탄성 해석과 3차원 응력해석 및 설계)

  • 오세희;유재석;김천곤;홍창선;김광수
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • This paper presents the thermo-elastic analysis for searching the behavior of carbon/carbon brake system during the braking period and the 3-D stress analysis to find the shape of the brake disk which is safe to the failure. The mechanical properties of the carbon/carbon brake disk were measured for both in-plane and out of plane directions. The mechanical properties were used as the input of the thermo-elastic analysis and 3-dimensional stress analysis for the brake disk. The gap between rotor clip and clip retainer is an important parameter in the loading transfer mechanism of the rotor disk. The change of gap was considered both the mechanical deformation and thermal deformation. Because the rotor clip and clip retainers were not contacted, they were excluded from the analysis model. Rotor disk was modeled by using the cyclic symmetry condition. The contact problems between rotor clip and key drum as well as between rotor disk and rotor were considered. From the results of the 3-D stress analysis, the stress concentration at the key hole of the brake disk was confirmed. The stress distributions were studied thor the variation of the rotation angle of the contact surface and the radius of curvature at the key hole part.

An Experimental study on Failure Mode of Space Frame's Ball joint connection (스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구)

  • Lee, Sung-Min;Kim, Min-Sook;Kim, Dae-Young;Song, Chang-Young;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

A study on the erosive wear of spray tip nozzle by epoxy primer paint impingement and the spraying characteristics (에폭시 프라이머 도료의 에어리스 스프레이 분사 시간에 따른 팁 노즐 침식마모경향과 분사특성 연구)

  • Kim, Jinuk;Cho, Yeon-Ho;Cheon, Je-Il;Han, Myoung-Soo
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.59-63
    • /
    • 2015
  • Airless spray which is widely used for painting to ship blocks and hull sides is the coating method for attaching atomized paint material to the substrate using spray tip nozzle with compressed air. When the paint material which has high solid contents such as epoxy primer paint is atomized by passing through spray tip nozzle with high pressure, the nozzle composed of tungsten carbide(WC) undergoes the erosive wear, leading to widening of nozzle hole. The deformation of nozzle hole induces improper spray pattern and coating failures such as finger pattern and sagging because the conditions of spray pump pressure and paint flow rate for developing full spray pattern are changed. In this study, an appropriate replacement cycle of spray tip was predicted by measuring the erosive wear tendency as increasing the spraying time of epoxy primer paint.

A Novel Picometer Positioning System for Machine Tools and Measuring Machines

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiroh;Tazoe, Yoichi;Kami, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.123-128
    • /
    • 2005
  • A novel tri-mode ultraprecision positioning system for machine tools and measuring machine is proposed. The basic coarse mode uses a Twist-roller Friction Drive (abbr. TFD), and controls several tens of millimeters of the machine-table travel with nanometer order of positioning resolution. The fine mode also utilizes the TFD with a fine adjusting mechanism. The resolution of the fine mode is in the range of sub-nanometer. For realizing picometer positioning, the ultra-fine mode is executed by using an active aerostatic guideway. On the bearing surface of this active guideway, several Active Inherent Restrictors (abbr. AIRs) are embedded for controlling the table position. An AIR unit consists of a piezoelectric actuator having a through hole, one end of the hole on the bearing surface acts as an inherent restrictor. Owing to the aerostatic mechanism of the AIR, the deformation of the piezoelectric actuator in the AIR unit causes much reduced table displacement. Such motion reduction is effective for ultraprecision positioning. Current positioning resolution of the ultra-fine mode is 50pm, however the final goal of the positioning resolution is expected to be in the order of picometer.

  • PDF

The buckling of rectangular plates with opening using a polynomial method

  • Muhammad, T.;Singh, A.V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.151-168
    • /
    • 2005
  • In this paper an energy method is presented for the linear buckling analysis of first order shear deformable plates. The displacement fields are defined in terms of the shape functions, which correspond to a set of predefined points and are composed of significantly high order polynomials. The locations of these points are found by mapping the geometry using the naturalized coordinates and bilinear shape functions. In order to evaluate the method, fully clamped and simply supported rectangular plates subjected to uniform uniaxial compressive loading on two opposite edges of the plate are investigated thoroughly and the results are compared with the exact solution given in the monograph of Timoshenko and Gere (1961). The method is extended to the analysis of perforated plates, wherein the negative stiffness computed over the opening area from in-plane and out-of-plane deformation modes is superimposed to the stiffness of the full plate. Numerical results are then favorably compared with those obtained by finite element methods. Other cases such as; rectangular plates with eccentrically located openings of different shapes are studied and reported in this paper with regards to the effect of aspect ratio, hole size, and hole position on the buckling. For a square plate with a large circular opening at the center, diameter being 80 percent of the length, the present method yields buckling coefficient 12.5 percent higher than the one from the FEM.

Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis (ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석)

  • Kwak, Si-Young;Nam, Jeong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF

Evaluation on Applicability of Stress Relief Hole for Improvement of Fatigue Stress Capacity of Steel Structural Details (강구조상세부의 피로저항능력 개선을 위한 응력완화홀 적용성 평가)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Kim, Kyoung Nam;Yang, Keon Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.451-461
    • /
    • 2013
  • In steel bridges, there are several details that constrain the deformation such as buckling by external forces. Most of these details which are composed of the intersection members have scallops in order to exclude the weld defects inherently and to get the ease of fabrication and also to decrease the stress concentration. In this study, stress relief hole (SRH) near stress concentration zone with detail category D or under is proposed as a method to improve the resistance on the fatigue crack initiation to detail category C. And the effects of the appropriate size and location of SRH were examined and the applicability to improve the fatigue resistance of the floorbeam web and the rib wall at rib/floorbeam intersection in the orthotropic steel deck bridge was evaluated.

Cracking Near a Hole on a Heat- Resistant Alloy Subjected to Thermo-Mechanical Cycling (열 및 기계적 반복하중 하의 내열금속 표면 홀 주변 산화막의 변형 및 응력해석)

  • Li, Feng-Xun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1227-1233
    • /
    • 2010
  • In the hot section of a gas turbine, the turbine blades were protected from high temperature by providing a thermal barrier coating (TBC) as well as by cooling air flowing through internal passages within the blades. The cooling air then passed through discrete holes on the blade surface, creating a film of cooling air that further protects the surface from the hot mainstream flow. The holes are subjected to stresses resulting from the lateral growth of thermally grown oxide, the thermal expansion misfit between the constituent layers, and the centrifugal force due to high-speed revolution; these stresses often result in cracking. In this study, the deformation and cracks occurring near a hole on a heat-resistant alloy subjected to thermo-mechanical cycling were investigated. The experiment showed that cracks formed around the hole depending on the applied stress level and the number of cycles. These results could be explained by our analytic solution.