• Title/Summary/Keyword: Hoek-cell triaxial test

Search Result 2, Processing Time 0.015 seconds

Evaluation of the q-w Curve on Rock-Socketed Drilled Shafts by Triaxial Compression Tests (삼축압축시험을 통한 암반에 근입된 현장타설말뚝의 선단 하중전이곡선 산정)

  • Kim, Tae-Hyung;Kim, Yong-Min;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.455-465
    • /
    • 2008
  • In this study, the load distribution and deformation of rock-socketed drilled shafts subjected to axial load are investigated based on small scale model tests. In order to analyze the effects of major influencing factors of end bearing capacity, Hoek-cell triaxial tests were performed. From the test results, it was found that the initial slope of end bearing load transfer (q-w) curve was highly dependent on rock mass modulus and pile diameter, while the ultimate unit toe resistance ($q_{max}$) was influenced by rock mass modulus and the spacing of discontinuities. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the Hoek-cell triaxial test results and the field loading tests which were performed on granite and gneiss in South Korea. Through the comparison with pile load tests, it is found that the load-transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer of drilled shaft.

  • PDF

A Study on Stress-Strain Characteristics of Compacted Bentonite for High-Level Radioactive Waste Repository (고준위폐기물 차폐용 압축벤토나이트의 응력-변형률 거동 분석)

  • Kim, Do-Hyun;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.792-797
    • /
    • 2009
  • The stress-strain characteristics of compacted bentonite are investigated using experimental triaxial compression test by Hoek-cell. Special attention given to various dry density and water absorption ratio. Based on the test results, it is shown that the stress-strain relationship of compacted bentonite is highly influenced by dry density and water absorption ratio. Also, characteristics of Bentonite is similar to the clay rather than sand. Strength of compressed Bentonite increases with higher dry density. It shows maximum strength value, if in a same condition with dry density and constrain pressure. So we determine that value as the optimistic moisture contents for the maximun strength of compressed Bentonite.

  • PDF