• Title/Summary/Keyword: Hoedong-Reservoir

Search Result 8, Processing Time 0.027 seconds

A Study on the Reduction of Flooding in Oncheon-Cheon through the Connection between Oncheon-Cheon and Hoedong-Reservoir Considering GIS (GIS를 고려한 온천천-회동저수지 연계를 통한 온천천 침수 저감 방안에 관한 연구)

  • Choo, Yeonmoon;Choe, Yeonwoong;Choo, Taiho;Jeon, Kunhak;Jeon, Haesung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • The average annual rainfall in Busan to increase, and in case of Oncheon-Chen in Busan, frequent flooding occurred frequently. The middle and lower reaches of the Oncheon-Chen are relatively flat and urban areas are developed. Therefore, due to the frequent flooding of rivers and the large flood damage, a method of effectively eliminating the flow rate of Oncheon-Chen in the event of heavy rain is needed. In this study, underground waterway was established in the east of Hoedong-Reservoir as a measure to reduce floods in hot springs and simulated with EPA-SWMM. The information needed to construct the basin was utilized by GIS. In middle part of the Suyeong-Gang, there is a Hoedong-Reservoir and a dam is installed and has better conditions than the Nakdong-Gang. It also analyzed the effect of the Oncheon-Chen flow through the underground waterway on the Suyeong-Gang when it was transferred to the Hoedong-Reservoir. It was analyzed that the flood reduction rate at the flood risk points set up in this study was reduced by 24.64% on average when the underground waterway was installed, and the inflow of the water into the Suyeong-Gang increased by 1% on average when the flow rate was excluded by the Suyeong-Gang.

On the phytoplankton community in Hoe-dong Reservoir (회동수원지의 식물플랑크톤군집에 관하여)

  • Mun, Seong-Gi;Hong, Chae-Gyu;Jeong, Jong-Mun
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.167-176
    • /
    • 1995
  • A study on phytoplankton community was carried out from June, 1992 to May, 1993 at selected stations in Hoedong Reservoir. The phytoplankton are identified as 176 taxa including 5 phylum, 67 genera. The important species in this reservoir were Asterionella formosa, C meneghiniana, Dictyosphaerium plilchellum, Fragilaria crotonensis, Melosira distans, M grantulata, M. granulata var. angustissima, M. granulate var. angntissima f. spirdis, Micractinium pussillum, Microcystis aeruginosa, Pundorina morn, Pediastrum boryanum, P. duplex, Peridinium sp., Scenedesmus quadriauda, Synedra acus, S. rumpens and S. ulna. The causative species of water bloom were identified as Microcystis aeruginsa, Trahellomonas hispida, Ceratium hirwdinella, Peridinium sp., Melosira italica, Staurastrum dorsidentiferum var. onatum in the area. During the study periods standing crcps of phytoplankton were maximum in August, 1992 and minimum in December 1992. The species dominance index and diversity index were ranged 24.7-99.9, 0.001-3.06, respectively. Key Words : phytoplankton community, causative species of water bloom, standing crops. dominance index, species diversity index.

  • PDF

The Analysis of Cyanobacterial Neurotoxins by High-Performance Liquid Chromatography-Mass Spectrometry

  • Jung, Jong-Mun;Lee, You-Jung;Park, Hong-Ki;Jung, Eun-Young;Joo, Gea-Jae
    • ALGAE
    • /
    • v.18 no.3
    • /
    • pp.233-238
    • /
    • 2003
  • Cyanobacteria were dominant from June to September in the Nakdong River and the Hoedong Reservoir. Microcystis aeruginosa was dominant from June to September; Anabaena flos-aquae from June to August and Aphanizomenon flos-aquae from July to August. Cyanobacterial neurotoxins, Anatoxin-a and saxitoxin were analyzed by electrospray ionization-mass spectrometry with strains of Aphanizomenon flos-aquae NIES-81 and Anabaena flosaquae NIER-10002. Anatoxin-a was not detected from the cultured Anabaena flos-aquae nor from the wild samples. Low levels of saxitoxin were detected in the cultured Aphanizomenon flos-aquae however, those of field samples were below the detection limit.

Operation evaluation of DAF pilot plant for water treatment process in Hoedong Reservoir (회동수원지의 정수처리 공정을 위한 DAF pilot plant 운영 성능평가)

  • Maeng, Minsoo;Shahi, Nirmal Kumar;Kim, Donghyeun;Shin, Gwyam;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.463-471
    • /
    • 2020
  • A 1,000 ㎥/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 ㎛ showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.

Dispersal of potential habitat of non-native species tilapia(Oreochromis spp.) inhabiting rivers in Korea (국내 하천에 서식하는 외래종 틸라피아(tilapia)의 잠재적 서식처 확산)

  • Ju Hyoun Wang;Jung Soo Han;Jun Kil Choi;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.101-108
    • /
    • 2023
  • Recently, in relation to climate change, many studies have been conducted to predict the potential habitat area and distribution range of tilapia and the suitability of habitat for each species. Most tilapia are tropical fish that cannot survive at water temperatures below 10 to 12℃, although some tilapia can survive at 6 to 8℃. This study predicted habitable areas and the possibility of spreading of habitat ranges of tilapia (Oreochromis niloticus and Oreochromis aureus) known to inhabit domestic streams. Due to climate change, it was found that habitats in the Geum River, Mangyeong River, Dongjin River, Seomjin River, Taehwa River, Hyeongsan River, and the flowing in East Sea were possible by 2050. In addition, it was confirmed that tilapia could inhabit the preferred lentic ecosystem such as Tamjin Lake, Naju Lake, Juam Lake, Sangsa Lake, Jinyang Lake, Junam Reservoir, and Hoedong Reservoir. In particular, in the case of tilapia, which lives in tributaries of the Geumho River, Dalseo Stream, and the Nakdong River, its range of habitat is expected to expand to the middle and lower of the Nakdong River system. Therefore, it is judged that it is necessary to prepare physical and institutional management measures to prevent the spread of the local population where tilapia currently inhabits and to prevent introduction to new habitats.