• Title/Summary/Keyword: Historical Resources

Search Result 645, Processing Time 0.03 seconds

Flood Risk for Power Plant using the Hydraulic Model and Adaptation Strategy

  • Nguyen, Thanh Tuu;Kim, Seungdo;Van, Pham Dang Tri;Lim, Jeejae;Yoo, Beomsik;Kim, Hyeonkyeong
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 2017
  • This paper provides a mathematical approach for estimating flood risks due to the effects of climate change by developing a one dimensional (1D) hydraulic model for the mountainous river reaches located close to the Yeongwol thermal power plant. Input data for the model, including topographical data and river discharges measured every 10 minutes from July $1^{st}$ to September $30^{th}$, 2013, were imported to a 1D hydraulic model. Climate change scenarios were estimated by referencing the climate change adaptation strategies of the government and historical information about the extreme flood event in 2006. The down stream boundary was determined as the friction slope, which is 0.001. The roughness coefficient of the main channels was determined to be 0.036. The results show the effectiveness of the riverbed widening strategy through the six flooding scenarios to reduce flood depth and flow velocity that impact on the power plant. In addition, the impact of upper Namhan River flow is more significant than Dong River.

MODFLOW-Farm Process Modeling for Determining Effects of Agricultural Activities on Groundwater Levels and Groundwater Recharge

  • Bushira, Kedir Mohammed;Hernandez, Jorge Ramirez
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.17-30
    • /
    • 2019
  • Intensive agricultural development in Mexicali valley, Baja-California, Mexico, has induced tremendous strain on the limited water resources. Agricultural water consumption in the valley mainly relies on diversions of the Colorado River, but their water supply is far less than the demand. Hence, the use of groundwater for irrigation purposes has gained considerable attention. To account for these changes, it is important to evaluate surface water and groundwater conditions based on historical water use. This study identified the effects of agricultural activities on groundwater levels and groundwater recharge in the Mexicali valley (in irrigation unit 16) by a comprehensive MODFLOW Farm process (MF-FMP) numerical modeling. The MF-FMP modeling results showed that the water table in the study area is drawn downed, more in eastern areas. The inflow-outflow analysis demonstrated that recharge to the aquifer occurs in response to agricultural supplies. In general, the model provides MF-FMP simulations of natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand in the study area.

Multivariate assessment of the occurrence of compound Hazards at the pan-Asian region

  • Davy Jean Abella;Kuk-Hyun Ahn
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.166-166
    • /
    • 2023
  • Compound hazards (CHs) are two or more extreme climate events combined which occur simultaneously in the same region at the same time. Compared to individual hazards, the combination of hazards that cause CHs can result in greater economic losses and deaths. While several extreme climate events have been recorded across Asia for the past decades, many studies have only focused on a single hazard. In this study, we assess the spatiotemporal pattern of dry compound hazards which includes drought, heatwave, fire and wind across Asia for the last 42 years (1980-2021) using the historical data from ERA5 Reanalysis dataset. We utilize a daily spatial data of each climate event to assess the occurrence of such compound hazards on a daily basis. Heatwave, fire and wind hazard occurrences are analyzed using daily percentile-based thresholds while a pre-defined threshold for SPI is applied for drought occurrence. Then, the occurrence of each type of compound hazard is taken from overlapping the map of daily occurrences of a single hazard. Lastly, a multivariate assessment are conducted to quantify the occurrence frequency, hotspots and trends of each type of compound hazard across Asia. By conducting a multivariate analysis of the occurrence of these compound hazards, we identify the relationships and interactions in dry compound hazards including droughts, heatwaves, fires, and winds, ultimately leading to better-informed decisions and strategies in the natural risk management.

  • PDF

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF

Future precipitation changes in Jeju island based on CMIP6 models (CMIP6 모델을 기반으로 한 제주도 강수량의 미래 변화)

  • Kim, Sunghun;Seo, Miru;Lee, Taewon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.186-186
    • /
    • 2020
  • 본 연구에서는 IPCC (Intergovernmental Panel on Climate Change) 6차 평가보고서(6th Assessment Report, AR6)에서 제시한 새로운 온실가스 경로(SSP, Shared Socioeconomic Pathways)에 따라 산출된 전지구 기후변화 시나리오를 이용하여 제주도의 미래 강수량 변화를 살펴보고자 한다. 기상청에서 운영하는 기후정보포털(http://www.climate.go.kr/)에서는 6가지 기상요소(평균기온, 최고기온, 최저기온, 강수량, 상대습도, 풍속 등)에 대하여 SSP 시나리오 자료를 제공하고 있다. SSP 시나리오는 SSP1-2.6 저탄소 시나리오(사회 불균형의 감소와 친환경 기술의 빠른 발달로 기후변화 완화, 적응능력이 좋은 지속성장가능 사회경제 구조)와 SSP5-8.5 고탄소 시나리오(기후정책 부재, 화석연료 기반 성장과 높은 인적 투자로 기후변화 적응능력은 좋지만 완화능력이 낮은 사회경제 구조)로 구분되어 제공되고 있다. 또한, 현재의 기후 상태를 모의하는 historical period (1850-2014) 자료와 미래의 기후상태를 모의한 future period (2015-2100) 자료가 있으며, 월별(momthly), 연간(yearly) 자료의 형태로 제공된다. 본 연구를 통하여 새로운 SSP 시나리오를 이용한 제주도 강수량의 미래 변화를 정량적으로 분석하였고, 기후변화에 능동적인 대책을 수립하는데 도움이 될 것으로 판단된다.

  • PDF

Performance comparison of INM-CM5 and INM-CM4 for monthly precipitation in historical period (INM-CM5 및 INM-CM4의 과거기간 월 강수량에 대한 성능 비교)

  • Song, Young Hoon;Chung, Eun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.197-197
    • /
    • 2020
  • 기후변화 연구의 주요 요소 중 하나는 온도, 강수량 및 증발과 같은 기후 요인의 변화를 연구하는 것이다. General Circulation Model(GCM)은 다양한 기후 요인의 변화를 연구하는 데 일반적으로 사용되고 있다. Coupled Model Intercomparison Project(CMIP)는 전 세계의 30여 개 이상의 기관에서 개발한 GCM의 모의 결과를 연구 및 공유하기 위해 개발되었다. 기후 연구에서 대표적으로 사용하고 있는 CMIP5의 GCM은 미래 시나리오인 Representative Concentration Pathway(RCP)를 기반으로 전망 기간의 기후요소를 예측한다. 현재 개발하고 있는 CMIP6의 미래 시나리오인 Shared Socioeconomic Pathways(SSP)는 인구, 경제개발, 생태계, 자원, 제도 및 사회적 요인에 대한 미래의 사회적, 경제적 변화에 따른 기후변화에 대한 대응을 포함하고 있으며, CMIP6의 미래 시나리오는 사회적 및 경제적 결합을 통해 기후변화에 대한 정책 영향에 대한 증진된 결과를 도출할 것으로 예측하고 있다. 따라서 본 연구는 CMIP5의 INM-CM4와 CMIP6의 INM-CM5를 사용하여 대한민국의 과거 기간(1970-2005)의 월 강수량에 대한 성능을 비교하였다. 격자형 자료인 GCM을 Inverse distance weight를 사용하여 대한민국 22개 관측소로 거리 보간을 수행하였으며, 편이보정 방법으로는 분위사상법(Quantile mapping) 방법 중 Smoothing Spline 방법을 사용하여 관측소와의 오차를 수정하였다. 산정된 강수량을 토대로 6개의 평가지표(NRMSE, Pbias, NSE, PRCP100, PRCP200, PRCP300)를 사용하여 GCM의 성능을 평가하여 INM-CM4와 INM-CM5의 성능을 비교하였다.

  • PDF

Hydro-meteorological analysis of January 2021 flood event in South Kalimantan Indonesia using atmospheric-hydrologic model

  • Chrysanti, Asrini;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.147-147
    • /
    • 2022
  • In January 2021 heavy flood affected South Kalimantan with causing many casualties. The heavy rainfall is predicted to be generated due to the ENSO (El Nino-Southern Oscillation). The weak La-Nina mode appeared to generate more convective cloud above the warmed ocean and result in extreme rainfall with high anomaly compared to past historical rainfall event. Subsequently, the antecedent soil moisture distribution showed to have an important role in generating the flood response. Saturated flow and infiltration excess mainly contributed to the runoff generation due to the high moisture capacity. The hydro-meteorological processes in this event were deeply analyzed using the coupled atmospheric model of Weather Research and Forecasting (WRF) and the hydrological model extension (WRF-Hydro). The sensitivity analysis of the flood response to the SST anomaly and the soil moisture capacity also compared. Result showed that although SST and soil moisture are the main contributors, soil moisture have more significant contribution to the runoff generation despite of anomaly rainfall occurred. Model performance was validated using the Global Precipitation Measurement (GPM) and Soil Moisture Operational Products System (SMOPS) and performed reasonably well. The model was able to capture the hydro-meteorological process of atmosphere and hydrological feedbacks in the extreme weather event.

  • PDF

Gauging the climate-associated risks for paddy water management based on reservoir performance indices

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.515-515
    • /
    • 2022
  • Climate change is strongly threatening the performance of agricultural reservoirs, which are instrumental in ensuring uninterrupted water supplies for rice cultivation in Korea. In this study, various performance indices were derived and overall sustainability of the 400 agricultural reservoirs was evaluated in the context of climate change trends during 1973-2017. Rice crop evapotranspiration, irrigation water requirements, runoff generation in the upstream watershed, and volumetric evaporation losses were plugged into a water balance model to simulate the reservoir operation during the study period. Resilience, reliability, and vulnerability are the three main indicators of reservoir performance, and these were combined into a single sustainability metric to define the overall system credibility. Historical climate data analysis confirmed that the country is facing a gradual warming shift, particularly in the central and southern agricultural regions. Although annual cumulative rainfall increased over the last 45 years, uneven monthly rainfall distribution during the dry and wet seasons also exacerbated the severity and frequency of droughts/floods. For approximately 85% of the selected reservoirs, the sustainability ranged between 0.35 to 0.77, and this range narrowed sharply with time, particularly for the reservoirs located in the western and southern coast regions. The study outcomes could help in developing the acceptable ranges of the performance indices and implementing appropriate policy and technical interventions for improving the sustainability of reservoirs with unacceptable ranges of the performance indices.

  • PDF

Predicting Desired Fertigation for Rose Using Internet of Things Sensors and Time-Series Model

  • Mingle Xu;Sook Yoon;Jongbin Park;Jeonghyun Baek;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • Greenhouse provides opportunities to have big yield effectively and efficiently. However, many resources are required, such as fertigation, a kind of solution of nutrient. Resources supply is essential to cultivate crops. Inadequate supply will hinder plant growth whereas the surplus results in waste. In this paper, we are especially interested in the fertigation supply. Further, excess fertigation leads to drainage which is difficult to purify and threatens the environment. To address this challenge, we aim to predict the desired amount of fertigation. To achieve this objective, we first establish a prototype to record the climate conditions inside a rose greenhouse using Internet of Things sensors. Simultaneously, the desired fertigation amount is obtained with the help of weight scale and historical data of fertigation supply and drainage. Second, a method is proposed to predict the desired fertigation by taking the sensors' data as input, with a time-series model. Extensive experimental results suggest the potential of our objective and method. To be specific, our method achieves an average MAE 0.032 in the validation datasets.

  • PDF

A cross-domain access control mechanism based on model migration and semantic reasoning

  • Ming Tan;Aodi Liu;Xiaohan Wang;Siyuan Shang;Na Wang;Xuehui Du
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1599-1618
    • /
    • 2024
  • Access control has always been one of the effective methods to protect data security. However, in new computing environments such as big data, data resources have the characteristics of distributed cross-domain sharing, massive and dynamic. Traditional access control mechanisms are difficult to meet the security needs. This paper proposes CACM-MMSR to solve distributed cross-domain access control problem for massive resources. The method uses blockchain and smart contracts as a link between different security domains. A permission decision model migration method based on access control logs is designed. It can realize the migration of historical policy to solve the problems of access control heterogeneity among different security domains and the updating of the old and new policies in the same security domain. Meanwhile, a semantic reasoning-based permission decision method for unstructured text data is designed. It can achieve a flexible permission decision by similarity thresholding. Experimental results show that the proposed method can reduce the decision time cost of distributed access control to less than 28.7% of a single node. The permission decision model migration method has a high decision accuracy of 97.4%. The semantic reasoning-based permission decision method is optimal to other reference methods in vectorization and index time cost.