• Title/Summary/Keyword: Histone deacetylase-3

Search Result 100, Processing Time 0.029 seconds

Sirt1 Promotes DNA Damage Repair and Cellular Survival

  • Song, Seung-Hyun;Lee, Mi-Ok;Lee, Ji-Seon;Oh, Je-Sok;Cho, Sung-Uk;Cha, Hyuk-Jin
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2011
  • Sirt1, a nicotinamide adenine dinucleotide ($NAD^+$)-dependent histone deacetylase, is known to deacetylate a number of proteins that are involved in various cellular pathways such as the stress response, apoptosis and cell growth. Modulation of the stress response by Sirtuin 1 (Sirt1) is achieved by the deacetylation of key proteins in a cellular pathway, and leads to a delay in the onset of cancer or aging. In particular, Sirt1 is known to play an important role in maintaining genomic stability, which may be strongly associated with a protective effect during tumorigenesis and during the onset of aging. In these studies, Sirt1 was generated in stably expressing cells and during the stimulation of DNA damage to examine whether it promotes survival. Sirt1 expressing cells facilitated the repair of DNA damage induced by either ionizing radiation (IR) or bleomycin (BLM) treatment. Fastened damaged DNA repair in Sirt1 expressing cells corresponded to prompt activation of Chk2 and ${\gamma}$-H2AX foci formation and promoted survival. Inhibition of Sirt1 enzymatic activity by a chemical inhibitor, nicotinamide (NIC), delayed DNA damage repair, indicating that promoted DNA damage repair by Sirt1 functions to induce survival when DNA damage occurs.

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

Targeting Catecholamines to Develop New Drugs for Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애 치료제 개발을 위한 카테콜아민계 표적화)

  • Sung-Cherl Jung;Chang-Hwan Cho;Hye-Ji Kim;Eun-A Ko;Min-Woo Ha;Oh-Bin Kwon
    • Journal of Medicine and Life Science
    • /
    • v.18 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • The prevalence of attention deficit hyperactivity disorder (ADHD), a developmental neuropsychiatric disorder, is high among children and adolescents. The pathogenesis of ADHD is mediated with genetic, biological, and environmental factors. Most therapeutic drugs for ADHD have so far targeted biological causes, primarily by regulating catecholaminergic neurotransmitters. However, ADHD drugs that are clinically treated have various problems in their addictiveness and drug stability; thus, it is recommended that efficacy and safety should be secured through simultaneous prescription of multiple drugs rather than a single drug treatment. Accordingly, it is necessary to develop drugs that newly target pathogenic mechanisms of ADHD. In this study, we attempt to confirm the possibility of developing new drugs by reviewing dopamine-related developmental mechanisms of neurons and their correlation with ADHD. Histone deacetylase inhibitors (HDACi) can regulate the concentration of intracellular dopamine in neurons by expressing vesicular monoamine transporter 2 and inducing the exocytosis of neurotransmitters to the synaptic cleft, thereby promoting the development of neurons and signal transmission. This cellular modulation of HDACi is expected to treat ADHD by regulating endogenous catecholamines such as dopamine. Although studies are still in the preclinical stage, HDAC inhibitors clearly have potential as a therapeutic agent with low addictiveness and high efficacy for ADHD treatment.

Expression of Sodium/iodide Symporter Transgene in Neural Stem Cells (신경줄기세포(HB1.F3)에서 나트륨옥소 공동수송체 도입유전자 발현)

  • Kim, Yun-Hui;Lee, Dong-Soo;Kang, Joo-Hyun;Lee, Yong-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Purpose: The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. Materials and Methods: F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (Internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. Results: The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to $20{\mu}M$, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. Conclusion: These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene ex[ressopm of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions.

Expressed Sequence Tags in Rainbow Trout (Oncorhynchus mykiss) Kidney and Microarray Analysis in Young and Old Kidney (무지개송어 신장으로부터 EST 발굴 및 연령에 따른 유전자 발현 분석)

  • Kim, Soon-Hag;Shin, Yong-Kook;Bang, In-Chul
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.128-135
    • /
    • 2003
  • 102 ESTs (Expressed Sequence Tags) were obtained by sequencing clones from a library of rainbow trout kidney cDNAs. Of the sequences generated, 55.8% of the ESTs were represented by 37 known genes. The 45 clones of unknown gene products potentially represent 40 novel genes. The genes involved in structural function (14.5%) and transcription/translation (11.6%) account for the major gene expression activities in the kidney Microarray experiment was conducted to compare gene expression of the unique ESTs in young and adult rainbow trout kidneys. While mitochondrion, cytochrome b, rho G, spastin protein, and three unknown genes were down-regulated in the mature fish kidney, calponin 1, calcium binding protein, histone deacetylase 1, and an unknown gene were up-regulated in the mature fish kidney. This research demonstrates the feasibility and power of functional genomics in rainbow trout.

Purification and Phytotoxicity of Apicidins Produced by the Fusarium semitectum KCTC16676

  • Jin, Jianming;Baek, Seung-Ryel;Lee, Kyung-Rim;Lee, Jungkwan;Yun, Sung-Hwan;Kang, Seog-Chan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.417-422
    • /
    • 2008
  • Apicidin is a cyclic tetrapeptide produced by some Fusarium species and is known to inhibit Apicomplexan histone deacetylase. The goals of this study were to determine species identity of Fusarium isolate KCTC16676, an apicidin producer, to improve a method for apicidin extraction, and to test phytotoxicity of apicidin and its analogs. We compared sequences of the translation elongation factor 1-alpha (TEF) gene in KCTC16676 with those from isolates representing diverse Fusarium species, which showed that KCTC16676 belongs to the F. semitectum-F. equiseti species complex. To enhance apicidin production, after culturing isolate KCTC16676 on a wheat medium for 3 weeks at $25^{\circ}C$, the culture was extracted with chloroform. Apicidins were purified through a reverse phase $C_{18}$ silica gel column, resulting in 5 g of apicidin, 200 mg of apicidin A, and 300 mg of apicidin $D_2$ from 4 kg of wheat cultures; this represents a significant yield improvement from a previous method, offers more materials to study the modes of its action, and facilitates the elucidation of the apicidin biosynthesis pathway. Apicidin and apicidin $D_2$ showed phytotoxicity on both seedlings and 2-week-old plants of diverse species, and weeds were more sensitive to apicidins than vegetables

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages

  • Youn, Gi Soo;Park, Jong Kook;Lee, Chae Yeon;Jang, Jae Hee;Yun, Sang Ho;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.223-228
    • /
    • 2020
  • Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of pro-inflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages.

Involvement of Corticotropin-releasing Factor Receptor 2β in Differentiation of Dopaminergic MN9D Cells

  • Jin, Tae-Eun;Jang, Miae;Kim, Hyunjung;Choi, Yu Mi;Cho, Hana;Chung, Sungkwon;Park, Myoung Kyu
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • Corticotropin releasing factor (CRF) mediates various responses to stress through CRF receptors 1 and 2. CRF receptor 2 has two forms, $2{\alpha}$ and $2{\beta}$ each of which appears to have distinct roles. Here we used dopaminergic neuron-derived MN9D cells to investigate the function of CRF receptor 2 in dopamine neurons. We found that n-butyrate, a histone deacetylase inhibitor, induced MN9D cell differentiation and increased gene expression of all CRF receptors. CRF receptor $2{\beta}$ was minimally expressed in MN9D cells; however, its expression dramatically increased during differentiation. CRF receptor $2{\beta}$ expression levels appeared to correlate with neurite outgrowth, suggesting CRF receptor $2{\beta}$ involvement in neuronal differentiation. To validate this statement, we made a CRF receptor $2{\beta}$-overexpressing $MN9D/CRFR2{\beta}$ stable cell line. This cell line showed robust neurite outgrowth and GAP43 overexpression, together with MEK and ERK activation, suggesting MN9D cell neuronal differentiation. From these results, we conclude that CRF receptor $2{\beta}$ plays an important role in MN9D cell differentiation by activating the MEK/ERK signaling pathway.

Vorinostat Induces Cellular Senescence in Fibroblasts Derived from Young and Aged Dogs

  • Kim, Min-Jung;Oh, Hyun-Ju;Setyawan, Erif Maha Nugraha;Choi, Yoo-Bin;Lee, Seok-Hee;Lee, Byeong-Chun
    • Journal of Veterinary Clinics
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • Although HDACIs affect ubiquitously expressed histone deacetylase and increase cellular senescence, there has been little study on the effect of age on treatment with HDACIs. Accordingly, the purpose of this study was to compare cellular senescence status and vorinostat-induced senescence in fibroblasts derived from aged dogs compared to young dogs. Skin tissues were taken from young (1-year-old) and aged (7-year-old) male dogs, and fibroblasts were cultured without (control) or with 10 uM of vorinostat for 24 hr. Beta-galactosidase activity was assessed, and real-time polymerase chain reaction and western blotting were performed to analyze the expression levels of transcripts and proteins related to cellular senescence. Beta-galactosidase activity was higher in aged dogs compared to young dogs in the control group, and was increased by vorinostat treatment. Expression of p21, p53 and p16 transcripts was higher in the aged than in the young group, and all transcripts were affected by vorinostat in both young and aged groups. Western blot results showed lower H3K9 acetylation in the aged dogs compared to the young dogs, and the acetylation was increased by vorinostat treatment in both groups. However, there was no significant difference between the transcript or protein alterations induced by vorinostat.