• Title/Summary/Keyword: Histone

Search Result 542, Processing Time 0.025 seconds

Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

  • Yusein-Myashkova, Shazie;Ugrinova, Iva;Pasheva, Evdokia
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.99-104
    • /
    • 2016
  • The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be "rescued" and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect.

PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells

  • Bishayee, Kausik;Khuda-Bukhsh, Anisur Rahman;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.518-527
    • /
    • 2015
  • Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and c ell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as $p21^{WAF}$, cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.

Purification and Characterization of Protein Phosphatase 2C from Rat Liver

  • Oh, Joung-Sook;Hwang, In-Seong;Choi, Myung-Un
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1997
  • Protein phosphatase 2C (PP2C) is one of the four major serine/threonine phosphatases which is dependent on $Mg^{2+}$ for its activity. PP2C was purified from rat liver cytosol and its characteristics were investigated. The substrate employed for routine assay was $[^{32}P]casein$ phosphorylated by PKA. The purification process involved DEAE chromatography, ammonium sulfate fractionation, phenyl sepharose chromatography, sephacryl 5-200 gel filtration, and histone agarose chromatography. The SDS-PAGE of PP2C showed one major single protein band at a position corresponding to a molecular mass of 43 kd and the purification fold was 637. The enzyme showed a pH optimum of 8 and $K_M$ value was $1.9\;{\mu}M$. However, when the substrate was changed to $[^{32}P]histone$, the pH optimum was shifted to 7 and $K_M$ value was $2.3\;{\mu}M.\;Mg^{2+}$ was essential to the enzyme activity and okadaic acid did not exert any inhibitory effect on the enzyme. To examine residue in the active site of PP2C effects of some protein-modifying reagents were tested.

  • PDF