• 제목/요약/키워드: Histograms of Oriented Gradients, HOG

검색결과 11건 처리시간 0.015초

사람 인식을 위한 비 이미지 개선 및 고속화 (Raining Image Enhancement and Its Processing Acceleration for Better Human Detection)

  • 박민웅;정근용;조중휘
    • 대한임베디드공학회논문지
    • /
    • 제9권6호
    • /
    • pp.345-351
    • /
    • 2014
  • This paper presents pedestrian recognition to improve performance for vehicle safety system or surveillance system. Pedestrian detection method using HOG (Histograms of Oriented Gradients) has showed 90% recognition rate. But if someone takes a picture in the rain, the image may be distorted by rain streaks and recognition rate goes down by 62%. To solve this problem, we applied image decomposition method using MCA (Morphological Component Analysis). In this case, rain removal method improves recognition rate from 62% to 70%. However, it is difficult to apply conventional image decomposition method using MCA on vehicle safety system or surveillance system as conventional method is too slow for real-time system. To alleviate this issue, we propose a rain removal method by using low-pass filter and DCT (Discrete Cosine Transform). The DCT helps separate the image into rain components. The image is removed rain components by Butterworth filtering. Experimental results show that our method achieved 90% of recognition rate. In addition, the proposed method had accelerated processing time to 17.8ms which is acceptable for real-time system.