• Title/Summary/Keyword: Histogram of impact pressure

Search Result 2, Processing Time 0.015 seconds

A Study on the Effect of Filling Ratio on Sloshing Impact Pressure (적재율이 슬로싱 충격압력에 미치는 영향에 관한 연구)

  • Choi, Hu-In;Kwon, Sun-Hong;Park, Jung-Ho;Choi, Young-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.30-33
    • /
    • 2010
  • This study presents the effect of filling ratio on sloshing impact pressure. The experiment was done with three filling ratios of 20%, 70%, and 95% of the tank height. The input of the motion was regular excitation. The total number of sensors in use were 53. They were installed on tank top and tank wall. The maximum pressures and the average of one third highest impact pressures for the whole pressure sensors were investigated. The result shows clearly the location of sensors which are exposed to the high impact pressures for different filling ratios. The characteristics of the impact patterns for three filling ratios were also examined.

A Study on the Post Processing of Flash Boiling Spray Image from Shadowgraphy (감압비등 분무의 역광이미지 후처리 기법에 관한 연구)

  • Hyunchang Lee
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2024
  • When investigating the droplet, spray, and impact of liquid on a solid plate, backlight imaging has been widely used to understand these phenomena. However, some previous studies have suffered from poor image quality. In this study, various combinations of image processing algorithms, such as white image correction, histogram equalization, CLAHE, Otsu's binarization, and multi-Otsu's binarization, have been applied to flash boiling spray images to enhance image quality for qualitative observation and semi-quantitative spray angle evaluation. To acquire images with high contrast for qualitative observation, applying CLAHE was effective, making small droplets and detailed shapes of the jet noticeable. However, when images were averaged to determine spray angle or penetration length based on intensity, this method induced artifact unphysical patterns, thus requiring careful consideration. Based on the algorithm proposed in this study, the spray angle variation according to injection pressure and temperature has been calculated, showing a reasonable trend.