• Title/Summary/Keyword: Histogram of Oriented Gradients(HOG)

Search Result 42, Processing Time 0.016 seconds

Image Denoising Via Structure-Aware Deep Convolutional Neural Networks (구조 인식 심층 합성곱 신경망 기반의 영상 잡음 제거)

  • Park, Gi-Tae;Son, Chang-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.85-95
    • /
    • 2018
  • With the popularity of smartphones, most peoples have been using mobile cameras to capture photographs. However, due to insufficient amount of lights in a low lighting condition, unwanted noises can be generated during image acquisition. To remove the noise, a method of using deep convolutional neural networks is introduced. However, this method still lacks the ability to describe textures and edges, even though it has made significant progress in terms of visual quality performance. Therefore, in this paper, the HOG (Histogram of Oriented Gradients) images that contain information about edge orientations are used. More specifically, a method of learning deep convolutional neural networks is proposed by stacking noise and HOG images into an input tensor. Experiment results confirm that the proposed method not only can obtain excellent result in visual quality evaluations, compared to conventional methods, but also enable textures and edges to be improved visually.

Computer Vision Approach for Phenotypic Characterization of Horticultural Crops (컴퓨터 비전을 활용한 토마토, 파프리카, 멜론 및 오이 작물의 표현형 특성화)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ho Jeong Jeong;Junyoung Park;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • This study explored computer vision methods using the OpenCV open-source library to characterize the phenotypes of various horticultural crops. In the case of tomatoes, image color was examined to assess ripeness, while support vector machine (SVM) and histogram of oriented gradients (HOG) methods effectively identified ripe tomatoes. For sweet pepper, we visualized the color distribution and used the Gaussian mixture model for clustering to analyze its post-harvest color characteristics. For the quality assessment of netted melons, the LAB (lightness, a, b) color space, binary images, and depth mapping were used to measure the net patterns of the melon. In addition, a combination of depth and color data proved successful in identifying flowers of different sizes and distances in cucumber greenhouses. This study highlights the effectiveness of these computer vision strategies in monitoring the growth and development, ripening, and quality assessment of fruits and vegetables. For broader applications in agriculture, future researchers and developers should enhance these techniques with plant physiological indicators to promote their adoption in both research and practical agricultural settings.