• Title/Summary/Keyword: Histogram modification

Search Result 32, Processing Time 0.028 seconds

Automatic Contrast Enhancement by Transfer Function Modification

  • Bae, Tae Wuk;Ahn, Sang Ho;Altunbasak, Yucel
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2017
  • In this study, we propose an automatic contrast enhancement method based on transfer function modification (TFM) by histogram equalization. Previous histogram-based global contrast enhancement techniques employ histogram modification, whereas we propose a direct TFM technique that considers the mean brightness of an image during contrast enhancement. The mean point shifting method using a transfer function is proposed to preserve the mean brightness of an image. In addition, the linearization of transfer function technique, which has a histogram flattening effect, is designed to reduce visual artifacts. An attenuation factor is automatically determined using the maximum value of the probability density function in an image to control its rate of contrast. A new quantitative measurement method called sparsity of a histogram is proposed to obtain a better objective comparison relative to previous global contrast enhancement methods. According to our experimental results, we demonstrated the performance of our proposed method based on generalized measures and the newly proposed measurement.

Weight based Histogram Modification for Contrast Enhancement (명암도 향상을 위한 가중치 기반 히스토그램 수정)

  • Kim, Young-Ro;Dong, Sung-Soo
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.7-13
    • /
    • 2010
  • In this paper, an efficient contrast enhancement algorithm using weighted histogram modification is proposed. For contrast enhancement, histogram equalization (HE) and histogram stretching (HS) are effective techniques. However, HE and HS may have excessive contrast enhancement. Proposed method using weighted histogram modification produces better natural and enhanced results than those of conventional contrast enhancement methods without artifacts.

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.

Automatic Dynamic Range Improvement Method using Histogram Modification and K-means Clustering (히스토그램 변형 및 K-means 분류 기반 동적 범위 개선 기법)

  • Cha, Su-Ram;Kim, Jeong-Tae;Kim, Min-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1047-1057
    • /
    • 2011
  • In this paper, we propose a novel tone mapping method that implements histogram modification framework on two local regions that are classified using K-means clustering algorithm. In addition, we propose automatic parameter tuning method for histogram modification. The proposed method enhances local details better than the global histogram method. Moreover, the proposed method is fully automatic in the sense that it does not require intervention from human to tune parameters that are involved for computing tone mapping functions. In simulations and experimental studies, the proposed method showed better performance than existing histogram modification method.

Perception-Based Tone Mapping Technique for Rendering HDR Image Using Histogram Modification (히스토그램 변형을 이용한 HDR 영상 렌더링을 위한 인지기반 톤 맵핑 기법)

  • Kim, Wonkyun;Ha, Changwoo;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.919-927
    • /
    • 2013
  • In this paper, we present a perception-based tone mapping technique using histogram modification for displaying high dynamic range image. HDR (high dynamic range) tone mapping algorithms are used to display HDR image on LDR (low dynamic rnage) devices. Although perception-based tone mapping methods provides better performance, it dose not always produce good results for a wide variety of images. The proposed method reduces dynamic range by using the perception-based tone mapping function and histogram modification. A derivative of perception-based tone mapping function is used as constraint function of histogram and additional compensation process is performed. This method not only improves contrast by adopting different constraints on each pixel value, but also preserves more visual details. In order to prevent over enhancement, histogram modification technique is applied. Furthermore, it can control the rate of image contrast using control parameters. Subjective and objective evaluations show that proposed algorithm is better than existing algorithms.

Histogram Modification based on Additive Term and Gamma Correction for Image Contrast Enhancement (영상의 대비 개선을 위한 추가 항과 감마 보정에 기반한 히스토그램 변형 기법)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1117-1124
    • /
    • 2018
  • Contrast enhancement plays an important role in various computer vision systems, since their usability can be improved with visibility enhancement of the images affected by weather and lighting conditions. This paper introduces a histogram modification algorithm that reflects the properties of original images in order to eliminate the saturation effect and washed-out of image details due to the over-enhancement. Our method modifies the original histogram so that an additive term fill histogram pits and the gamma correction suppresses histogram spikes. The parameters for the additive term and gamma correction are adjusted automatically according to statistical properties of the images. Experimental results for various low contrast and hazy images demonstrate that the proposed contrast enhancement improves visibility and reduces haze components effectively, while preserving the characteristics of original images, than the conventional methods.

Lossless Data Hiding Using Modification of Histogram in Wavelet Domain (웨이블릿 영역에서 히스토그램 수정을 이용한 무손실 정보은닉)

  • Jeong Cheol-Ho;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.27-36
    • /
    • 2006
  • Lossless data embedding is a method to insert information into a host image that guarantees complete restoration when the extraction has been done. In this paper, we propose a noble reversible data embedding algorithm for images in wavelet domain. The proposed embedding technique, which modifies histogram of wavelet coefficient, is composed of two inserting steps. Data is embedded to wavelet coefficient using modification of histogram in first embedding process. Second embedding step compensates the distortion caused by the first embedding process as well as hides more information. Hence we achieve higher inserting capacity. In view of the relationship between the embedding capacity and the PSNR value, our proposed method shows considerably higher performance than the current reversible data embedding methods.

Shape Preserving Contrast Enhancement

  • Hwang Jae Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.867-871
    • /
    • 2004
  • In this paper, a new analytic approach for shape preserving contrast enhancement is presented. Contrast enhancement is achieved by means of segmental histogram stretching modification which preserves the given image shape, not distorting the original shape. After global stretching, the image is partitioned into several level-sets according to threshold condition. The image information of each level-set is represented as typical value based on grouped differential values. The basic property is modified into common local schemes, thereby introducing the enhanced effect through extreme discrimination between subsets. The scheme is based on stretching the histogram of subsets in which the intensity gray levels between connected pixels are approximately same In spite of histogram widening, stretched by local image information, it neither creates nor destroys the original image, thereby preserving image shape and enhancing the contrast. By designing local histogram stretching operations, we can preserve the original shape of level-sets of the image, and also enhance the global intensity. Thus it can hold the main properties of both global and local image schemes, which leads to versatile applications in the field of digital epigraphy.

  • PDF

Development of Adaptive Endoscope Image Enhancer Using Histogram (Histogram을 이용한 적응형 내시경 Image Enhancer의 개발)

  • Lee, S.H.;Kim, J.H.;Song, C.G.;Lee, Y.M.;Kim, W.K.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.345-348
    • /
    • 1997
  • Endoscope image is the shape that a doctor sees inside of patient through endoscope. The characteristics of these images are much effected by the light source of endoscope, specially areas in short distance from a light have much light source and look clear, but areas in long distance from a light look dark relatively because of little light quantity. So we developed a new level adaptive image enhancer for the dark area in a endoscope image. The algorithm we made consists of three parts ; 1) Classification of histogram in segmented area 2) Smoothing and Adaptive Histogram Equalization 3) Adaptive Histogram Modification.

  • PDF

Contrast Image Enhancement Using Multi-Histogram Equalization

  • Phanthuna, Nattapong;cheevasuwit, Fusak
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.161-170
    • /
    • 2015
  • Mean separated histogram equalization in order to preserve the original mean brightness has been proposed. To provide the minimum mean brightness error after the histogram modification, the input image's histogram is successively divided by the factor of 2 until the mean brightness error is satisfied the defined threshold. Then each divided group or sub-histogram will be independently equalized based on the proportional input mean. To provide the overall minimum mean brightness error, each group will be controlled by adding some certain pixels from the adjacent grey level of the next group for giving its mean near by the corresponding the divided mean. However, it still exists some little error which will be put into the next adjacent group. By successive dividing the original histogram, we found that the absolute mean brightness error is gradually decreased when the number of group is increased. Therefore, the error threshold is assigned in order to automatically dividing the original histogram for obtaining the desired absolute mean brightness error (AMBE). This process will be applied to the color image by treating each color independently.