• Title/Summary/Keyword: Histogram Modification

Search Result 32, Processing Time 0.015 seconds

Dosimetric Evaluation of Synthetic Computed Tomography Technique on Position Variation of Air Cavity in Magnetic Resonance-Guided Radiotherapy

  • Hyeongmin Jin;Hyun Joon An;Eui Kyu Chie;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 2022
  • Purpose: This study seeks to compare the dosimetric parameters of the bulk electron density (ED) approach and synthetic computed tomography (CT) image in terms of position variation of the air cavity in magnetic resonance-guided radiotherapy (MRgRT) for patients with pancreatic cancer. Methods: This study included nine patients that previously received MRgRT and their simulation CT and magnetic resonance (MR) images were collected. Air cavities were manually delineated on simulation CT and MR images in the treatment planning system for each patient. The synthetic CT images were generated using the deep learning model trained in a prior study. Two more plans with identical beam parameters were recalculated with ED maps that were either manually overridden by the cavities or derived from the synthetic CT. Dose calculation accuracy was explored in terms of dose-volume histogram parameters and gamma analysis. Results: The D95% averages were 48.80 Gy, 48.50 Gy, and 48.23 Gy for the original, manually assigned, and synthetic CT-based dose distributions, respectively. The greatest deviation was observed for one patient, whose D95% to synthetic CT was 1.84 Gy higher than the original plan. Conclusions: The variation of the air cavity position in the gastrointestinal area affects the treatment dose calculation. Synthetic CT-based ED modification would be a significant option for shortening the time-consuming process and improving MRgRT treatment accuracy.

Joint Quality Control of MPEG-2 Video Programs for Digital Broadcasting Services (디지털 방송 서비스를 위한 MPEG-2 비디오 프로그램들의 결합 화질 제어)

  • 홍성훈;김성대
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.69-84
    • /
    • 1998
  • In digital broadcasting, services such as digital satellite TV, cable TV and digital terrestrial TV, several video programs are compressed by MPEG-2, and then simultaneously transmitted over a conventional CBR (Constant Bit Rate) broadcasting channel. In this paper, we propose a joint quality control scheme to be able to accurately control the relative picture quality among the video programs, which is achieved by simdt;,nL'Ously controlling the video encoders to generate the VBR (Variable Bit Rate) compressed video streams. Our quality control scheme can prevent the video buffer overflow and underflow by total target bit allocation process, and also exactly control the relative picture quality in terms of PSNR (Peak Signal to Noise Ratio) between some programs requiring higher picture quality and others by rate-distortion modification. Furthermore we present a rate-distortion estimation method for MPEG-2 video, which is base of our joint quality control, and verify its performance by experiments. The most attractive features of this estimation method are as follows: 1) computational complexity is low because main operation for the estimation is to calculate the histogram of OCT coefficients into quantizer; 2) estimation results are very accurate enough to be applied to the practical MPEG-2 video coding applications. Simulation results show that the proposed joint quality control scheme accurately controls the relative picture quality among the video progran1s transmitted over a single channel as well as provides more consistent and higher picture quality than independent coding scheme that encodes each program independently.

  • PDF