번호판 인식 시스템의 인식 성능의 향상을 위해서는 문자 추출 및 문자인식을 하는 인식단계의 성능도 중요하지만 번호판 영역의 추출의 성능, 또한 중요하다. 본 논문에서는 기존 번호판 추출 과정의 오류를 분석하여, 유형별 분류를 하고, HoG (histogram of gradient) 특징 추출과 AdaBoost 기반 검증 절차를 적용하여 알고리즘 개선을 하였다. HoG 특징은 다양한 유형의 번호판 유형과 잡음에 강건한 특성을 갖게 되어, 이전에 검출하지 못하였던 번호판 영역을 검출하는데 효과적인 방법임을 보여준다.
In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.
An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a method for FER based on the histogram of orientation gradient (HOG) features using an ELM ensemble. First, the HOG features were extracted from the face image by dividing it into a number of small cells. A bagging algorithm was then used to construct many different bags of training data and each of them was trained by using separate ELMs. To recognize the expression of the input face image, HOG features were fed to each trained ELM and the results were combined by using a majority voting scheme. The ELM ensemble using bagging improves the generalized capability of the network significantly. The two available datasets (JAFFE and CK+) of facial expressions were used to evaluate the performance of the proposed classification system. Even the performance of individual ELM was smaller and the ELM ensemble using a bagging algorithm improved the recognition performance significantly.
Symmetry is easily found in animals and plants as well as in artificial structures. It is useful not only for human cognitive process but also for image understanding by computer. Application areas include face detection and recognition, indexing of image database, image segmentation and detection, and analysis of medical images. The method used in this paper extracts edges, and the perpendicular bisector of any pair of selected edge points is considered to be a candidate axis of symmetry. The coefficients of the perpendicular bisectors are accumulated in the coefficient space. Axis of symmetry is determined to be the line for which the histogram has maximum value. This method shows good results, but the usefulness of the method is restricted because the amount of computation increases proportional to the square of the number of edges. In this paper, an acceleration method is proposed which performs $2^{2n}$ times faster than the original one. Experiment on 20 test images shows that the proposed method using level-3 image segmentation performs 63.9 times faster than the original method.
In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.
최근 딥러닝 환경의 확산으로 인하여 데이터셋 생성의 중요성이 높아지고 있어, 효율적인 데이터 셋 생성을 위하여 GAN을 활용하여 데이터를 증강시키고 있다. 그러나 GAN을 활용하여 생성되는 데이터에는 학습 초기 발생하는 문제점 및 생성되는 영상 내에 픽셀 깨짐 현상이 발생하는 등 여러 문제점이 발견되고 있다. 본 논문에서는 기존 GAN에서 발생하는 여러 문제점을 해결하기 위하여 파손 영상 데이터 선별 알고리즘을 구현하고자 한다. 파손 영상 선별 알고리즘은 영상 내의 히스토그램 분포를 분석하고 해당 결과값이 지정한 임곗값에 만족하는지에 따라 생성된 영상의 저장 여부를 결정하도록 구현하였다.
For the purpose of predicting credit card customer churn accurately through data analysis Detecting and tracking objects in continuous video is essential in self-driving cars, security and surveillance systems, sports analytics, medical image processing, and more. Correlation tracking methods such as Normalized Cross Correlation(NCC) and Sum of Absolute Differences(SAD) are used as an effective way to measure the similarity between two images. NCC, a representative correlation tracking method, has been useful in real-time environments because it is relatively simple to compute and effective. However, correlation tracking methods are sensitive to rotation and size changes of objects, making them difficult to apply to real-time changing videos. To overcome these limitations, this paper proposes an object tracking method using the Histogram of Oriented Gradients(HOG) feature to effectively obtain object data and the Convolution Neural Network(CNN) algorithm. By using the two algorithms, the shape and structure of the object can be effectively represented and learned, resulting in more reliable and accurate object tracking. In this paper, the performance of the proposed method is verified through experiments and its superiority is demonstrated.
본 논문은 LBG 알고리즘을 이용하여 다양한 조명에 노출된 의상들의 색상 유사성을 안정적으로 판단하는 방법을 제안한다. 색상 유사성 판별을 위하여 기존에 대표적으로 사용되어왔던 히스토그램 인터섹션이나 누적 히스토그램 방법은 조명 변화에 민감하게 반응하여, 동일한 의상 색상이라 할지라도 서로 다른 조명환경에서는 서로 상이한 색상 판별 결과를 나타낸다. 본 논문에서는 조명에 의한 영향을 줄이고 색상 자체의 분포 특성을 분석하기 위하여 조명조건의 변화에도 일관된 특성을 유지하는 색조와 채도 컬러 성분에 대한 분포 특성을 분석한다. 색조와 채도에 의해 정의되는 2차원 공간에서 각 의상 영상에 대한 색상 분포를 분석하기 위하여 LBG 알고리즘에 의한 비모수적 클러스터링 기법을 적용하고, 클러스터링 결과 얻어진 두 영상의 클러스터 사이의 평균 유클리디안 거리 값을 계산하여 이를 색상 유사성을 판단하는 유사 값으로 정의한다. 제안 기법의 안정성을 입증하기 위하여 서로 다른 조명 환경에서 촬영된 12벌의 의상에 대하여 기존 히스토그램 분석 기법을 기반으로 한 색상 유사성 판별 결과와 제안 기법의 적용 결과를 비교하였다. 실험 결과 제안기법은 동일한 의상 쌍과 상이한 의상 쌍에 대하여 구분을 지을 수 있는 객관적 기준 정의가 용이하였고, 기준에 따른 의상의 동일성 판별 실험에서 91.6%의 판별 성공률을 얻었다.
본 논문에서는 1m 해상도의 위성 영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트 히스토그램을 이용하여 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 4-neighbor에 위치한 화소의 수평 또는 수직 방향의 평균 그레디언트 값을 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 강한 에지 화소는 높은 평탄화 지수를 가지며 반면에 비에지 화소의 경우에는 낮은 평탄화 지수를 가진다. 평탄화 지수 영상의 히스토그램을 이용하여 각 화소의 에지 또는 비에지 화소 여부를 결정하는 평탄화 임계값을 구한다. 각 화소의 평탄화 지수가 평탄화 임계값보다 크면 에지화소로, 작으면 비에지 화소로 분류한다. 초기 정합 창틀 내에 존재하는 비에지 화소의 비율이 작으면 밝기 값 변화가 적은 영역으로 판정하고 정합 창틀의 크기를 더 크게 설정하고 이 과정을 정합 창틀이 최대 크기에 도달할 때까지 반복적으로 수행한다. IKONOS 스테레오 위성영상을 실험영상으로 사용하였으며 고정크기의 정합 창틀을 이용한 방법에 비해 향상된 정합 결과를 얻었다.
본 논문에서 에지를 검출하기 위해 개선된 에지 검출 방법들이 제안되었으며, 정확하고 빠른 검출을 위해서 임계값을 사용한 이진화 영상들이 실험에 사용되었다. 각 방법들의 실험적인 분석을 위해서 기존방법들과 개선된 방법들을 비교 분석하였다. 여기에서 기존방법들은 소벨, 로버트, 프리위트방법들이다. 그리고 개선된 방법들은 기존 방법들의 마스크 변위를 적용하였다. 개선된 방법들의 장점은 에지들의 침식이 많이 발생하지 않았고, 명확하게 에지를 검출할 수 있었다. 특히, 실험적인 분석을 위해서 의료영상에 그레이 영상을 사용하였고, 명확한 에지를 검출하기 위해서 결과영상에 대해서 임계값을 적용하였다. 각 방법들의 정량화 된 분석을 위해서 의료영상에 대해서 히스토그램을 적용하였다. 결론적으로, 기존 방법들과 개선된 방법들을 다수의 의료영상들의 분석적인 그래프에 적용시켜서 개선된 방법들의 장점을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.