• 제목/요약/키워드: Histogram Analysis

검색결과 490건 처리시간 0.027초

HoG와 AdaBoost를 이용한 번호판 영역 추출 (Extraction of the License Plate Region Using HoG and AdaBoost)

  • 유신;최성일;이완주;이병래;민경원;강현철
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권4호
    • /
    • pp.597-604
    • /
    • 2009
  • 번호판 인식 시스템의 인식 성능의 향상을 위해서는 문자 추출 및 문자인식을 하는 인식단계의 성능도 중요하지만 번호판 영역의 추출의 성능, 또한 중요하다. 본 논문에서는 기존 번호판 추출 과정의 오류를 분석하여, 유형별 분류를 하고, HoG (histogram of gradient) 특징 추출과 AdaBoost 기반 검증 절차를 적용하여 알고리즘 개선을 하였다. HoG 특징은 다양한 유형의 번호판 유형과 잡음에 강건한 특성을 갖게 되어, 이전에 검출하지 못하였던 번호판 영역을 검출하는데 효과적인 방법임을 보여준다.

  • PDF

HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현 (Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier)

  • 김진율;박찬준;오성권
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.443-458
    • /
    • 2014
  • An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a method for FER based on the histogram of orientation gradient (HOG) features using an ELM ensemble. First, the HOG features were extracted from the face image by dividing it into a number of small cells. A bagging algorithm was then used to construct many different bags of training data and each of them was trained by using separate ELMs. To recognize the expression of the input face image, HOG features were fed to each trained ELM and the results were combined by using a majority voting scheme. The ELM ensemble using bagging improves the generalized capability of the network significantly. The two available datasets (JAFFE and CK+) of facial expressions were used to evaluate the performance of the proposed classification system. Even the performance of individual ELM was smaller and the ELM ensemble using a bagging algorithm improved the recognition performance significantly.

An Acceleration Method for Symmetry Detection using Edge Segmentation

  • Won, Bo Whan;Koo, Ja Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권9호
    • /
    • pp.31-37
    • /
    • 2015
  • Symmetry is easily found in animals and plants as well as in artificial structures. It is useful not only for human cognitive process but also for image understanding by computer. Application areas include face detection and recognition, indexing of image database, image segmentation and detection, and analysis of medical images. The method used in this paper extracts edges, and the perpendicular bisector of any pair of selected edge points is considered to be a candidate axis of symmetry. The coefficients of the perpendicular bisectors are accumulated in the coefficient space. Axis of symmetry is determined to be the line for which the histogram has maximum value. This method shows good results, but the usefulness of the method is restricted because the amount of computation increases proportional to the square of the number of edges. In this paper, an acceleration method is proposed which performs $2^{2n}$ times faster than the original one. Experiment on 20 test images shows that the proposed method using level-3 image segmentation performs 63.9 times faster than the original method.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

히스토그램 분석 기반 파손 영상 선별 알고리즘 (Broken Image Selection Algorithm based on Histogram Analysis)

  • 조진환;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.72-74
    • /
    • 2021
  • 최근 딥러닝 환경의 확산으로 인하여 데이터셋 생성의 중요성이 높아지고 있어, 효율적인 데이터 셋 생성을 위하여 GAN을 활용하여 데이터를 증강시키고 있다. 그러나 GAN을 활용하여 생성되는 데이터에는 학습 초기 발생하는 문제점 및 생성되는 영상 내에 픽셀 깨짐 현상이 발생하는 등 여러 문제점이 발견되고 있다. 본 논문에서는 기존 GAN에서 발생하는 여러 문제점을 해결하기 위하여 파손 영상 데이터 선별 알고리즘을 구현하고자 한다. 파손 영상 선별 알고리즘은 영상 내의 히스토그램 분포를 분석하고 해당 결과값이 지정한 임곗값에 만족하는지에 따라 생성된 영상의 저장 여부를 결정하도록 구현하였다.

  • PDF

HOG 알고리즘과 CNN을 이용한 객체 검출 시스템에 관한 연구 (Research on Objects Tracking System using HOG Algorithm and CNN)

  • 박병준;김현식
    • 디지털산업정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.13-23
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis Detecting and tracking objects in continuous video is essential in self-driving cars, security and surveillance systems, sports analytics, medical image processing, and more. Correlation tracking methods such as Normalized Cross Correlation(NCC) and Sum of Absolute Differences(SAD) are used as an effective way to measure the similarity between two images. NCC, a representative correlation tracking method, has been useful in real-time environments because it is relatively simple to compute and effective. However, correlation tracking methods are sensitive to rotation and size changes of objects, making them difficult to apply to real-time changing videos. To overcome these limitations, this paper proposes an object tracking method using the Histogram of Oriented Gradients(HOG) feature to effectively obtain object data and the Convolution Neural Network(CNN) algorithm. By using the two algorithms, the shape and structure of the object can be effectively represented and learned, resulting in more reliable and accurate object tracking. In this paper, the performance of the proposed method is verified through experiments and its superiority is demonstrated.

LBG 알고리즘 기반의 의상 색상 유사성 판별 (Distinction of Color Similarity for Clothes based on the LBG Algorithm)

  • 주형돈;홍민;조위덕;문남미;최유주
    • 인터넷정보학회논문지
    • /
    • 제9권5호
    • /
    • pp.117-130
    • /
    • 2008
  • 본 논문은 LBG 알고리즘을 이용하여 다양한 조명에 노출된 의상들의 색상 유사성을 안정적으로 판단하는 방법을 제안한다. 색상 유사성 판별을 위하여 기존에 대표적으로 사용되어왔던 히스토그램 인터섹션이나 누적 히스토그램 방법은 조명 변화에 민감하게 반응하여, 동일한 의상 색상이라 할지라도 서로 다른 조명환경에서는 서로 상이한 색상 판별 결과를 나타낸다. 본 논문에서는 조명에 의한 영향을 줄이고 색상 자체의 분포 특성을 분석하기 위하여 조명조건의 변화에도 일관된 특성을 유지하는 색조와 채도 컬러 성분에 대한 분포 특성을 분석한다. 색조와 채도에 의해 정의되는 2차원 공간에서 각 의상 영상에 대한 색상 분포를 분석하기 위하여 LBG 알고리즘에 의한 비모수적 클러스터링 기법을 적용하고, 클러스터링 결과 얻어진 두 영상의 클러스터 사이의 평균 유클리디안 거리 값을 계산하여 이를 색상 유사성을 판단하는 유사 값으로 정의한다. 제안 기법의 안정성을 입증하기 위하여 서로 다른 조명 환경에서 촬영된 12벌의 의상에 대하여 기존 히스토그램 분석 기법을 기반으로 한 색상 유사성 판별 결과와 제안 기법의 적용 결과를 비교하였다. 실험 결과 제안기법은 동일한 의상 쌍과 상이한 의상 쌍에 대하여 구분을 지을 수 있는 객관적 기준 정의가 용이하였고, 기준에 따른 의상의 동일성 판별 실험에서 91.6%의 판별 성공률을 얻었다.

  • PDF

그레디언트 히스토그램을 이용한 정합 창틀 크기의 자동적인 결정 (Automatic Determination of Matching Window Size Using Histogram of Gradient)

  • 예철수;문창기
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.113-117
    • /
    • 2007
  • 본 논문에서는 1m 해상도의 위성 영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트 히스토그램을 이용하여 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 4-neighbor에 위치한 화소의 수평 또는 수직 방향의 평균 그레디언트 값을 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 강한 에지 화소는 높은 평탄화 지수를 가지며 반면에 비에지 화소의 경우에는 낮은 평탄화 지수를 가진다. 평탄화 지수 영상의 히스토그램을 이용하여 각 화소의 에지 또는 비에지 화소 여부를 결정하는 평탄화 임계값을 구한다. 각 화소의 평탄화 지수가 평탄화 임계값보다 크면 에지화소로, 작으면 비에지 화소로 분류한다. 초기 정합 창틀 내에 존재하는 비에지 화소의 비율이 작으면 밝기 값 변화가 적은 영역으로 판정하고 정합 창틀의 크기를 더 크게 설정하고 이 과정을 정합 창틀이 최대 크기에 도달할 때까지 반복적으로 수행한다. IKONOS 스테레오 위성영상을 실험영상으로 사용하였으며 고정크기의 정합 창틀을 이용한 방법에 비해 향상된 정합 결과를 얻었다.

개선된 검출 마스크를 이용한 에지추출 방법들에 관한 연구 (The Study of Edge Extract Methods Using Improved Detect Mask)

  • 신충호
    • 한국멀티미디어학회논문지
    • /
    • 제12권2호
    • /
    • pp.191-199
    • /
    • 2009
  • 본 논문에서 에지를 검출하기 위해 개선된 에지 검출 방법들이 제안되었으며, 정확하고 빠른 검출을 위해서 임계값을 사용한 이진화 영상들이 실험에 사용되었다. 각 방법들의 실험적인 분석을 위해서 기존방법들과 개선된 방법들을 비교 분석하였다. 여기에서 기존방법들은 소벨, 로버트, 프리위트방법들이다. 그리고 개선된 방법들은 기존 방법들의 마스크 변위를 적용하였다. 개선된 방법들의 장점은 에지들의 침식이 많이 발생하지 않았고, 명확하게 에지를 검출할 수 있었다. 특히, 실험적인 분석을 위해서 의료영상에 그레이 영상을 사용하였고, 명확한 에지를 검출하기 위해서 결과영상에 대해서 임계값을 적용하였다. 각 방법들의 정량화 된 분석을 위해서 의료영상에 대해서 히스토그램을 적용하였다. 결론적으로, 기존 방법들과 개선된 방법들을 다수의 의료영상들의 분석적인 그래프에 적용시켜서 개선된 방법들의 장점을 증명하였다.

  • PDF