• 제목/요약/키워드: Histidyl residue

검색결과 3건 처리시간 0.024초

Chemical Modification of Bovine Brain Succinic Semialdehyde Reductase by Diethylpyrocarbonate

  • Lee, Byung-Ryong;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Choi, Kyung-Soon;Yoon, Byung-Hak;Ahn, Yoon-Kyung;Choi, Eun-A;Lee, Kil-Soo;Cho, Sung-Woo;Choi, Soo-Young
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.254-258
    • /
    • 1999
  • The NADPH-dependent succinic semialdehyde reductase is one of the key enzymes in the brain GABA shunt, and it catalyzes the formation of the neuromodulator $\gamma$-hydroxybutyrate from succinic semi aldehyde. This enzyme was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of $1.1{\times}10^3\;M^{-1}min^{-1}$ at pH 7.0, $25^{\circ}C$, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. Complete inactivation of succinic semialdehyde reductase required the modification of five histidyl residues per molecule of enzyme. However, only one residue was calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity. The inactivation of the enzyme by DEP was prevented by preincubation of the enzyme with the coenzyme NADPH but not with the substrate succinic semialdehyde. These results suggest that an essential histidyl residue involved in the catalytic activity is located at or near the coenzyme binding site of the brain succinic semialdehyde reductase.

  • PDF

Chemical Modification of Glycolate Oxidase from Spinach by Diethyl Pyrocarbonate. Evidence of Essential Histidine for Enzyme Activity$^\dag$

  • Lee, Kun-Kook;Kim, Hong-Sun;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.280-285
    • /
    • 1987
  • FMN-dependent glycolate oxidase from spinach is inactivated by diethyl pyrocarbonate at pH 7.0. Inactivation of both apo- and holoenzyme by diethyl pyrocarbonate follows pseudo-first-order kinetics and first order with respect to the reagent. A series of difference spectra of inactivated and native enzymes show a single peak at 240 nm, indicating the modification of histidyl residues. No decrease in absorbance at around 280 nm due to formation of O-carbethoxytyrosine is observed. The rate of inactivation is dependent on pH, and the data for pH dependent rates implicate the involvement of a group with a pKa of 6.9. The activity lost by treatment with diethyl pyrocarbonate could be almost fully restored by incubation with 0.75M hydroxylamine. The reactivation by hydroxylamine and the pH dependence of inactivation are also consistent with that the inactivation is due to modification of histidyl residues. Although coenzyme FMN is without protective effect, the substrate glycolate, the product glyoxylate, and two competitive inhibitors, oxalate and oxalacetate, provide marked protection against the inactivation of the holoenzyme. These results suggest that the inactivation of the oxidase by diethyl pyrocarbonate occurs by modification of essential histidyl residue(s) at the active site.

히스티딜기등을 포함하는 미셀성 계면활성제를 촉매로 사용한 파라니트로페닐 에스테르의 가수분해반응에 관한 연구 (A Study on the Hydrolysis of p-Nitrophenyl Carboxylates by Micellar Surfactants Catalysts Involving Histidyl Residue)

  • 구원회;홍춘표
    • 대한화학회지
    • /
    • 제33권1호
    • /
    • pp.3-10
    • /
    • 1989
  • 파파인효소의 가수분해반응을 이해하기 위하여 파파인의 활성점에 모여 있는 히스티딘, 시스테인, 및 히스테인-시스테인을 포함하는 양이온성 펩티드-계면활성제를 합성하였다. 이것을 촉매로 사용하여 PNPL을 가수분해 시킬때 pH 7.40에서 촉매의 효율성은 $N^{+}C_{2}AlaC^{12}$과 비교하여 $N^{+}C_{2}HisC_{12}$, $N^{+}C_{2}HisC_{12}$, $N^{+}C_{2}HisCysC_{12}$, 순으로 현저한 증가를 나타내고 그 이유는 $N^{+}C_{2}HisC_{12}$는 이미다졸기, $N^{+}C_{2}CysC_{12}$는 티올기 영향이며, 가장 좋은 촉매효율을 나타내는 $N^{+}C_{2}HisCysC_{12}$은 이미다졸기와 티올기의 상호작용때문이다. 가수분해반응을 촉진시키는 펩티드-계면활성제의 이미다졸기와 티올기들의 활동성을 나타내는 해리상수, pKa는 각각 6.49, 10.50 이고, 기능기에 의한 속도상수, $k^{\ast}_m$는 각각 $7.91{\times}10^{-4}S^{-1}$, $6.00{\times}10^{-4}S^{-1}$이었다. 가수분해에 대한 혼합미셀계의 촉매효과는 파라니트로페닐 에스테르의 알킬기의 탄소수가 증가함에 따라 증가하므로 기능기의 작용외에는 미셀의 소수성 부분과 기질사이의 상호작용에 의하여도 증가됨을 알았다.

  • PDF