• Title/Summary/Keyword: Hirayama disease

Search Result 3, Processing Time 0.015 seconds

Association of the X-linked Androgen Receptor Leu57Gln Polymorphism with Monomelic Amyotrophy

  • Park, Young-Mi;Lim, Young-Min;Kim, Dae-Seong;Lee, Jong-Keuk;Kim, Kwang-Kuk
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.64-68
    • /
    • 2011
  • Monomelic amyotrophy (MA), also known as Hirayama disease, occurs mainly in young men and manifests as weakness and wasting of the muscles of the distal upper limbs. Here, we sought to identify a genetic basis for MA. Given the predominance of MA in males, we focused on candidate neurological disease genes located on the X chromosome, selecting two X-linked candidate genes, androgen receptor (AR ) and ubiquitin-like modifier activating enzyme 1 (UBA1). Screening for genetic variants using patients' genomic DNA revealed three known genetic variants in the coding region of the AR gene: one nonsynonymous single-nucleotide polymorphism (SNP; rs78686797) encoding Leu57Gln, and two variants of polymorphic trinucleotide repeat segments that encode polyglutamine (CAG repeat; rs5902610) and polyglycine (GGC repeat; rs3138869) tracts. Notably, the Leu57Gln polymorphism was found in two patients with MA from 24 MA patients, whereas no variants were found in 142 healthy male controls. However, the numbers of CAG and GGC repeats in the AR gene were within the normal range. These data suggest that the Leu57Gln polymorphism encoded by the X-linked AR gene may contribute to the development of MA.

Gemcitabine Plus Nedaplatin as Salvage Therapy is a Favorable Option for Patients with Progressive Metastatic Urothelial Carcinoma After Two Lines of Chemotherapy

  • Matsumoto, Kazumasa;Mochizuki, Kohei;Hirayama, Takahiro;Ikeda, Masaomi;Nishi, Morihiro;Tabata, Ken-ichi;Okazaki, Miyoko;Fujita, Tetsuo;Taoka, Yoshinori;Iwamura, Masatsugu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2483-2487
    • /
    • 2015
  • This study was conducted to evaluate the effectiveness of a combination of gemcitabine and nedaplatin therapy among patients with metastatic urothelial carcinoma previously treated with two lines of chemotherapy. Between February 2009 and August 2013, 30 patients were treated with gemcitabine and paclitaxel as a second-line chemotherapy. All had received a first-line chemotherapy consisting of methotrexate, vinblastine, doxorubicin and cisplatin. Ten patients who had measurable histologically proven advanced or metastatic urothelial carcinoma of the urinary bladder and upper urinary tract received gemcitabine $1,000mg/m^2$ on days 1, 8 and 15 and nedaplatin $70mg/m^2$ on day 2 as a third-line chemotherapy. Tumors were assessed by imaging every two cycles. The median number of treatment cycles was 3.5. One patient had partial response and three had stable disease. The disease-control rate was 40%, the median overall survival was 8.8 months and the median progression-free survival was 5.0 months. The median overall survival times for the first-line and second-line therapies were 29.1 and 13.9 months, respectively. Among disease-controlled patients (n=4), median overall survival was 14.2 months. Myelosuppression was the most common toxicity. There were no therapy-related deaths. Gemcitabine and nedaplatin chemotherapy is a favorable third-line chemotherapeutic option for patients with metastatic urothelial carcinoma. Given the safety and benefit profile seen in this study, further prospective trials are warranted given the implications of our results with regard to strategic chemotherapy for patients with advanced or metastatic urothelial carcinoma.