• Title/Summary/Keyword: Hippocampal sparing

Search Result 3, Processing Time 0.02 seconds

Hippocampal Sparing Whole Brain Radiotherapy and Integrated Simultaneous Boost vs Stereotactic Radiosurgery Boost: A Comparative Dosimetric Planning Study

  • Cheah, Soon Keat;Matthews, Thomas;Teh, Bin Sing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4233-4235
    • /
    • 2016
  • Background: Whole brain radiotherapy (WBRT) and stereotactic radiosurgery were frequently used to palliate patients with brain metastases. It remains controversial which modality or combination of therapy is superior especially in the setting of limited number of brain metastases. The availability of newer medical therapy that improves survival highlighted the importance of reducing long term radiation toxicity associated with WBRT. In this study, we aim to demonstrate the hippocampal sparing technique with whole brain and integrated simultaneous boost Materials and Methods: Planning data from 10 patients with 1-5 brain metastases treated with SRS were identified. Based on the contouring guideline from RTOG atlas, we identified and contoured the hippocampus with 5mm isocentric expansion to form the hippocampal avoidance structure. The plan was to deliver hippocampal sparing whole brain radiotherapy (HSWBRT) of 30 Gy in 10 fractions and simultaneous boost to metastatic lesions of 30 Gy in 10 fractions each. Results: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy. Conclusions: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.

NEUROTOXICITY OF TRIMETHYLTIN IN HIPPOCAMPUS: A HYPEREXCITATORY TOXICITY

  • Chang, Louis W.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.191-204
    • /
    • 1990
  • Trimethyltin (TMT) induced lesions in the rat hippocampal formation was reviewed. Adult rats were treated with a single dose of 6.0 mg TMT/kg b.w. and were sacrificed between 3-60 days following exposure. On the hippocampal formation, the granule cells of fascia dentata showed early changes which subsided considerably at a later time when the destruction of the pyramidal neurons of the Ammon's horn became increasingly pronounced with time, leading to severe destruction of the structure. It is interesting to note that there was an inverse relationship of pathological involvement between the f.d. granule cells and the Ammon's horn neurons; i.e., when there was a large sparing of the granule cells. there was an extensive damage to the Ammon's horn and vice versa. This inverse relationship was also true between the $CA_3$neurons and the $CA_{1,2}$neurons in the Ammon's horn. Progressive zinc loss, as demonstrated by Timm's method, on the Mossy fibers was also observed. Similar Mossy fiber zinc depletion has been demonstrated in electrical stimulatory excitation condition of the perforant path to the hippocampus. Depletion of corticosterone, an inhibitor to the hippocampal neurons, by means of adrenalectomy will exaggerate the TMT induced hippocampal lesion. Neonatal study revealed that a unique degenerative pattern of the Ammon's horn could be established in accordance with exposure to TMT at specific maturation periods of the fippocampal formation: increasing destruction of the Ammon's horn with increasing synaptogenesis between the f.d. granule cells and the Ammon's horn neurons. Thus it is apparent that the damage of the Ammon's horn, upon exposure to TMT, may depend on the integrity and functional state of the f.d. granule cells. A hyperexcitory scheme and mechanism as the toxicity basis of TMT in the hippocampal formation is proposed and discussed.

  • PDF

Changes of Polyamine Metabolism and Delayed Neuronal Degeneration of Hippocampus after Transient Cerebral Ischemia in Mongolian Gerbils (뇌허혈 손상에 있어서 Polyamine 대사의 변동이 해마신경세포의 지연성괴사에 미치는 효과에 관한 연구)

  • Shin, Kyung-Ho;Shin, Hwa-Jung;Lee, Young-Jae;Kim, Hyung-Gun;Choi, Sang-Hyun;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.323-334
    • /
    • 1996
  • Male Mongolian gerbils $(60{\sim}80g)$ were given DL-difluoromethylornithine (DFMO; 250mg/kg, ip) and methylglyoxal bis(guanylhydrazone) (MGBG; 50 mg/k, ip), respectively, 1 h prior to transient (7 min) occlusion of bilateral common carotid arteries (OBC7) and a daily dose of one of them for 6 days after recirculation, and the polyamine contents, activities of ornithine and S-adenosylmethionine decarboxylases (ODC and SAM-DC), and light microscopic findings of the hippocampus were evaluated. The hippocampal putrescine (PT) levels of the control gerbils treated with saline (STGr), markedly increased after OBC7, showing a peak level at 24 h after recirculation. The peak PT level was reduced in DFMO treated gerbils (DTCr) and in MGBG treated gerbils (MTGr). And 7 days after recirculation, the PT level of DTGr was decreased to about 75% of the PT level in the sham operated group (nonTGr) and to about 55% of the STGr level, respectively. The hippocampal spermidine (SD) level of STGr tended to decline, showing the lowest value at 8 h after recirculation. But the spermidine (SD) level of DTGr was somewhat higher at 8 h after OBC7 than those of STGr and MTGr The hippocampal spermine (SM) levels of all the experimental groups were little changed for 7 days after OBC. OBC7 markedly increased the hippocampal ODC activity. reaching a maximum (about 3 times higher than preischemic level) at 8 h and rapidly recovered to the control value by 24 h in STGr gerbils, and the OBC7-induced increase of ODC activity was significantly attenuated by DFMO or MGBG treatment. Whereas OBC7 induced a rapid decrease of the hippocampal SAMDC activity follwed by gradual recovery to the preischemic level, and the decrease of the SAMDC activity was slightly attenuated by DFMO or MGBG treatment. 7 Days after OBC7 the histological finding of the hippocampal complex stained with cresyl violet showed an extensive delayed neuronal damage in the CA1 region and to a lesser extent, in the dentate gyrus, sparing the CA3 region. And the neuronal death was aggevated by DFMO but significantly attenuated by MGBG. The immunochemical reactivity of hippocampus to anti-GFAP antibody was significantly increased in the CA1 region and to a lesser extent, in the dentate gyrus 7 days after OBC7, but was little changed in the CA3. And the increase of the anti-GFAP immunoreactivity was moderately enhanced by DFMO and significantly suppressed by MGBG. These results suggest that the polyamine metabolism may play a modulatory role in the ischemic brain damage.

  • PDF