• Title/Summary/Keyword: Hip muscle force

Search Result 43, Processing Time 0.025 seconds

Evaluation of Seat Pan Inclination During Sit-to-stand for Development of Elderly Lifting-chair

  • Hong, Jae-Soo;Kim, Jong-Hyun;Chun, Keyoung-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.357-363
    • /
    • 2011
  • Objective: The aim of this study is to set the design direction of the lift chair's tilting seat for development. Background: Great attention has been shown to the development of senior friendly product, because of increasing elderly population rapidly in Korea. Therefore, we need to study on sit-to-stand(STS) motion of elderly systematically for developing lift chair that is one of senior friendly products. Method: In this study, we analyzed joint moment(knee, hip) and muscle activity (Erector spinae, Rectus femoris, Vastus lateralis) on STS motion of elderly(female, 60~70: 7) and young people(female, 20~30: 7) using 3 dimension motion capture camera, force plate, wireless EMG. Results: The results of muscle activity showed a similar trend but the results of joint moment were a lot of differences between the young and the elderly. Conclusion: The results of knee joint moment suggest the angle(10~30deg)-adjustable seat that can be better than to find the optimal seat's angle. Application: The method and results of this study are expected to develop senior friendly product and verification as well as be available to various application.

A proposal of the Optimal Angle of Standing Assistant Chair for the Elderly by Comparing of Pressure Distribution on Hip (둔부의 압력분포 비교를 이용한 고령자용 기립보조의자의 기립 최적각도 제안)

  • Chang, Sung-Ho;Baek, Ji-Hoon;Lee, Jung-Eon;Mirazamjon, Nematov;Kang, Seok-Wan;Lee, Wang-Bum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.108-114
    • /
    • 2018
  • One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over $25^{\circ}$, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than $25^{\circ}$ for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on $0^{\circ}$ to $25^{\circ}$ tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.

A Study of Joint Therapy (II) (관절치료에 관한 연구 (II))

  • Bae, Sung-soo;Lee, Myung-hee;Lee, Sang-yeul;Kim, Sang-soo
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2009
  • Purpose : The objective of this study was conducted to find out treatment of weight bearing joint problems. Method : This is a literature study with books, seminar note and international PNF course books. Result : In joint therapy have to consider that what kind joint mechanics during movement, what kind relation between rotatory component of the force and translatory component of the force, what kind muscles are in the global mobilizer(GM) and local stabilizer(LS). One joint has muscle imbalance between GM and LS. It will make joint surface degenerative change which will make joint pain. Conclusion : Joint therapy is not only joint mobilization but also biomechanics of joint and GM's and LS's role. Total knee of hip joint replacement is not perfect. Before surgery have to be find out problem solving method within the physical medicine.

  • PDF

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.

Effects of Combined Exercise on Injury Risk Factors of Lower Extremity during Landing (아동의 복합운동이 착지 시 하지 손상요인에 미치는 영향)

  • Ha, Sung-He;Yoo, Si-Hyun;Kim, Joo-Nyeon;Gil, Ho-Jong;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • The purpose of this study was to investigate the effect of combined exercise on injury risk factors of lower extremity during landing. Ten sports talented athletes participated in this study. Sports talented athletes participated in a combined exercise (sports talented exercise, coordination) for 16 weeks. A three-dimensional motion analysis was performed using eight infrared cameras (sampling rate of 100 Hz), one force plate, and electromyography system (sampling rate of 1000 Hz) during landing. Kinetic, and kinematics analysis including average impulsive force, angle of lower extremity, vertical stiffness, onset of muscle activation were calculated by Matlab2009a software. Paired t-test was performed at alpha=.05. The average impulsive force in landing phase was not statistically significant (t=-.748, p=.474). The hip joint angle was more decreased in post test compared to pre test (E1: t=2.682, p=.025, E2: t=5.609, p=.000, E3: t=2.538, p=.032). The knee joint (E1: t=-.343, p=.739, E2: t=1.319, p=.220, E3: t=.589, p=.570) and ankle joint (E1: t=.081, p=.937, E2: t=.784, p=.453, E3: t=.392, p=.704) angle were tended to decrease after combined exercise. The vertical stiffness was tended to decrease after combined exercise (t=1.972, p=.080). Onset of quadriceps femoris (t=.698, p=.503) and medial gastocnemius (t=1.858, p=.096) were tended to be faster than biceps femoris (t=-.333, p=.747) after combined exercise. Although thses findings were not statistically significant except on a hip joint angle, risk factors of lower extremity such as joint angle, vertical stiffness and onset of quadriceps femoris, medial gastrocnemius were positively changed after the combined exercise but an additional training for improved onset of biceps femoris would be required in the future.

Joint moments and muscle forces during walking with sided load as one of activities of daily living (편향하중 조건 보행시 인체의 적응 작용에 대한 분석)

  • Kim, Hyun-Dong;Son, Jong-Sang;Kim, Han-Sung;Kim, Young-Ho;Lim, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1709-1712
    • /
    • 2008
  • The trunk is inclined to the loaded side when carrying an object as one of activities of daily living. As the reaction to this behavior the human body may be inclined to his/her trunk to unloaded side. The present study investigated the biomechanical effects of weight variation for sided load carriage during walking upon joint moments and muscle torques, through the tracker agent and joint driving dynamic analysis. To perform the experiment one male was selected as subject for the study. Gait analysis was performed by using a 3D motion analysis system. Thirty nine 14mm reflective markers, according to the plug-in marker set, were attached to the subject. We used BRG.LifeMOD(Biomechanics Research Group, Inc., USA), for skeletal modeling and inverse and joint driving dynamic simulation during one gait cycle. In walking with a sided load carriage, the subject modeled held the carriage with the right hand, which weighed 0, 5, 10, 15kg, 20kg respectively. The result of this simulation showed that knee and hip in the coronal plane were inclined to the loaded side and loaded side had larger moments as the sided load carriage was increased. On the other hand thoracic and lumbar in the coronal plane had larger negative values as the sided loaded carriage was increased. The thoracic and lumbar in the transverse plane also had larger values as the sided load was increased. And the several muscles of loaded side were increased as increasing sided load. It could be concluded that human body is adopted to side loaded circumstances by showing more biologic force. These results could be very useful in analysis for delivery motion of daily life.

  • PDF

Gait Analysis of Patients with Tumor Prosthesis around the Knee (인공 종양대치물을 이용한 사지구제술후의 보행 분석)

  • Lee, Sang-Hoon;Chung, Chin-Youb;Kim, Han-Soo;Kim, Byung-Sung;Lee, Han-Koo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1997
  • Prosthetic replacement is one of the most common methods of reconstruction after resection of malignant tumor around the knee. Gait analysis provides a relative objective data about the gait function of patients with prosthesis. The purpose of this study was to compare the gait pattern of the patients who underwent limb salvage surgery with prosthesis for distal femur and that of patients with prosthesis for proximal tibia. This study included ten patients (4 males, 6 females, mean age 22.7 years, range 14-36) who underwent a wide resection and Kotz hinged modular reconstruction prosthesis replacement and six normal adult(Control). The site of bone tumor was the distal femur (Group 1) in six patients and proximal tibia (Group 2) in 4 patients. The follow-up period ranged from 15 to 82 months (mean : 33 months). The evaluation consisted of clinical assessment, radiographic assessment, gait analysis using VICON 370 Motion Analysis System. The gait analysis included the linear parameters such as, walking velocity, cadence, step length, stride length, stance time, swing time, single support and double support time and the three-dimensional kinematics (joint rotation angle, velocity of joint rotation) of ankle, knee, hip and pelvis in sagittal, coronal and transverse plane. For the kinetic evaluation, the moment of force (unit: Nm/kg) and power (unit: Watt/kg) of ankle, knee and hip joint in sagittal, coronal and transverse plane. In the linear parameters, cadence, velocity, step time and single support were decreased in both group 1 and group 2 compared with control. Double support decreased in group 2 compared with control significantly(p<.05). In contrast to our hypothesis, there was no significant difference between group 1 and group 2. In Kinematics, we observed significant difference (p<.05) of decreased knee flexion in loading response (G2

  • PDF

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.

Differences in the Length Change Pattern of the Medial Gastrocnemius Muscle-Tendon Complex and Fascicle during Gait and One-legged and Two-legged Vertical Jumping (보행과 한발·두발 수직점프 수행 시 내측비복근 근-건 복합체와 근섬유다발의 길이 변화 패턴의 차이)

  • Lee, Hae-Dong;Han, Bo-Ram;Kim, Jin-Sun;Oh, Jeong-Hoon;Cho, Han-Yeop;Yoon, So-Ya
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.175-182
    • /
    • 2015
  • Objective : The purpose of this study was to investigate difference in fascicle behavior of the medial gastrocnemius during the locomotion with varying intensities, such as gait and one-legged and two-legged vertical jumping. Methods : Six subjects (3 males and 3 females; age: $27.2{\pm}1.6yrs.$, body mass: $62.8{\pm}9.8kg$, height: $169.6{\pm}8.5cm$) performed normal gait (G) at preferred speed and maximum vertical jumping with one (OJ) and two (TJ) legs. While subjects were performing the given tasks, the hip, knee and ankle joint motion and ground reaction force was monitored using a 8-infrared camera motion analysis system with two forceplates. Simultaneously, electromyography of the triceps surae muscles, and the fascicle length of the medial gastrocnemius were recorded using a real-time ultrasound imaging machine. Results : Comparing to gait, the kinematic and kinetic parameters of TJ and OJ were found to be significantly different. Along with those parameters, change in the medial gastrocnemius (MG) muscle-tendon complex (MTC) length ($50.57{\pm}6.20mm$ for TJ and $44.14{\pm}5.39mm$ for OJ) and changes in the fascicle length of the MG ($18.97{\pm}3.58mm$ for TJ and $20.31{\pm}4.59mm$ for OJ) were observed. Although the total excursion of the MTC and the MG fascicle length during the two types of jump were not significantly different, however the pattern of length changes were found to be different. For TJ, the fascicle length maintained isometric longer during the propulsive phase than OJ. Conclusion : One-legged and two-legged vertical jumping use different muscle-tendon interaction strategies.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.