• Title/Summary/Keyword: Hill Climb Method

Search Result 4, Processing Time 0.02 seconds

Improvement of Dynamic encoding algorithm with history information (동부호화 최적화 기법의 성능개선을 위한 과거 검색정보의 활용)

  • Park, Young-Su;Kim, Jong-Wook;Kim, Yeon-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.111-113
    • /
    • 2006
  • DEAS is an direct searching and optimization method that based on the binary code space. It can be classified as an direct hill climbing searching. However, because of binary code space based searching, the searching in low resolution has random property. As the resolution of code increases during the search, its property of searching changes like that of hill climbing search. This paper propose a method for improving the performance of minimum seeking ability of DEAS with history information. The cost evaluation is increased. However the minimum searching ability of DEAS is improved along the same starting resolution.

  • PDF

Maximum Power Point Tracking in PMSG Using Fuzzy Logic Algorithm

  • Trinh, Quoc Nam;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.135-138
    • /
    • 2009
  • In this paper, a novel maximum power point tracking (MPPT) for a PMSG-based variable speed wind power system is proposed using the fuzzy logic algorithm. The control algorithm is developed based on the normal hill climb searching (HCS) method, commonly used in wind energy conversion systems (WECS). The inputs of fuzzy-based controller are the derivations of DC output power and the step size of DC/DC converter duty cycles. The main advantages of the proposed MPPT method are no need to measure the wind velocity and the generator rotational speed. As such, the control algorithm is independent of turbine characteristics, achieving the fast dynamic responses with non-linear fuzzy systems. The effectiveness of the proposed MPPT strategy has been verified through the simulated results.

  • PDF

All in focus Camera vision system for Mobile Phone based on the Micro Diffractive Fresnel lens systems (곡률 변경 소자를 이용한 All In Focus)

  • Chi, Yong-Seok;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2007
  • A method to focus the object in camera system by applying the Hill climb algorithm from optical lens moving device (VCM; Voice coil motor) is proposed. The focusing algorithm from VCM is focus on the object but in these criteria is a well-known drawback; the focus is good only at same distance objects but the focus is bad (blur image) at different distance objects because of the DOF (Depth of focus) or DOF (Depth of field) at the optical characteristic. Here, the new camera system that describes the Reflector of free curvature systems (or Diffractive Fresnel lens) and the partition of focusing window area is proposed. The method to improve the focus in all areas (different distance objects) is proposed by new optical system (discrete auto in-focus) using the Reflector of free curvature systems (or Diffractive Fresnel lens) and by applying the partition of all areas. The proposal is able to obtain good focus in all areas.

  • PDF

A Study of Vehicle Fuel Consumption Simulation using VHDL-AMS Multi-domain Simulation

  • Abe, Takashi;Takakura, Shikoh;Higuchi, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • The vehicle system is a multi-domain system that requires many branches of science and engineering. Therefore the development of the vehicle system requires the use of design methodologies that utilize simulations, which have grown increasingly sophisticated in recent years. Our research group proposed a simulation modeling method based on the VHDL-AMS language. This paper describes how VHDL-AMS is used to model of vehicle fuel consumption simulation. The fuel consumption is shown using proposed simulation model on the Japanese 10-15 mode. We examine the influence of the vehicle system with electrical load and hill climb resistance in the vehicle running resistance.