• Title/Summary/Keyword: Highway Noise Spectrum

Search Result 5, Processing Time 0.018 seconds

Prediction of Highway Traffic Noise - Estimation of Sound Power Level Emitted by Vehicles (고속도로 교통소음 예측-자동차 주행소음의 음향파워레벨 평가)

  • 조대승;오정한;김진형;김성훈;최태묵;장태순;강희만;이성환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.581-588
    • /
    • 2002
  • Precise highway traffic noise simulation and reduction require the accurate data for sound power levels omitted by vehicles, varied to road surface, traffic speed, vehicle types and makers, different from countries to countries. In this study, we have elaboratively measured Korea highway traffic noise and parameters affecting noise levels at the nearside carriageway edge. From numerical simulation using the measured results for highway traffic noise, we propose not only two correction factors to enhance the accuracy of Korea highway traffic sound power estimation using ASJ Model-1998 but also its typical power spectrum according to road surface type. The measured and predicted highway traffic noise levels using the proposed sound power show little difference within 1 dB.

Characteristics Analysis of Highway Traffic Noise (고속도로 발생소음의 특성 분석)

  • Kim, Chulhwan;Chang, Taesun;Kim, Deuk Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1191-1198
    • /
    • 2012
  • Highway traffic noise is the one of the most frequent pollutant source of environmental claims in Korea for the last 10 years. For abating the noise from the highways, characteristics of highway noise source should be investigated and identified before performing the abatements. Highway noises are affected by traffic volume, vehicle types and speed, tyre and pavement types. In this study, highway noises which measured from different pavements have been analyzed and compared. Especially, the noise from the asphalt concrete pavement, cement concrete pavement and low-noise pavement have been measured simultaneously at the same traffic condition and compared each other. Hopefully, the data of the study may be used for abating highway noise and further studies.

Acoustic Power Estimation of Highway Traffic Noise (고속도로 교통소음의 음향파워 평가)

  • 오정한;조대승;장태순;강희만;이용은;박형식;권성용;이성환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1273-1279
    • /
    • 2001
  • Precise highway traffic noise simulation and reduction require the accurate data for sound power levels emitted by vehicles, varied to road surface, traffic speed, vehicle types and makers, different from countries to countries. In this study, we have elaboratively measured domestic highway traffic noise and parameters affecting noise levels at the nearside carriageway edge. From numerical simulation using the measured results for highway traffic noise, we propose not only two correction factors to enhance the accuracy of highway traffic sound power estimation using ASJ Model-1998 but also its typical power spectrum according to road surface type. The measured and predicted highway traffic noise levels using the proposed sound power shows little difference within 1 dB.

  • PDF

A Study on the Test Method for Noise Reduction Devices Installed on the Noise Barriers (방음벽 상단 소음저감장치의 감음성능 평가방법 연구)

  • Kim, Chul-Hwan;Chang, Tae-Sun;Kim, Deuk-Sung;Kim, Dong-Jun;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.791-796
    • /
    • 2010
  • Installing noise barriers is the most common method for reducing the highway traffic noise to the road side residential area. After the report about edge potential concept of a noise barrier, various types of noise reducing devices(NRDs) called "noise reducers" have been suggested for getting more shielding effect on the top of highway noise barriers. But, it has been doubtful about effect of the NRDs in field because there was no appropriate and unified method to estimate the acoustic performance by using field measurement of the NRDs in Korea. In this study, the authors have considered to setup a practical method to test and estimate the acoustic performance of NRDs. For eliminating the noise reduction effect of the NRDs height itself, the source and measuring points are adjusted as highly as the NRDs height. For the frequency weighting in the estimation of the NRDs effect, the highway noise spectra were measured at asphalt and concrete road side and then averaged for a unit spectral parameter.

A Study of Traffic Noise Characteristics on the National Highways (일반국도의 교통소음특성에 관한 연구)

  • Son, Hyeon Jang;An, Deok-Soon;Baek, Cheolmin;Kwon, Soo-Ahn;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.11-18
    • /
    • 2013
  • PURPOSES : This study presents the noise level and frequency characteristics investigated in the national highways with the consideration of various measuring conditions and/or methods. METHODS : The noise levels on the asphalt concrete pavement(ACP) and the jointed plain concrete pavement(JPCP) of the national highway were measured and analysed with respect to three variables, i.e., pavement type, surface condition, and measurement distance. The PASS-By method is utilized for the noise measurement and then using CPB spectrum analysis method with 1/3 octave bandwidth, the noise levels and frequency characteristics were calculated for two-second periods before and after the peak noise. RESULTS : Depending on the pavement type, the noise level was changed as the average noise levels are 73.3dB(A) and 78.3dB(A) for ACP and JPCP, respectively. With respect to the effect of surface condition, the average noise levels for crack H(high), M(medium), and L (low) sections are 77.4dB(A), 77.4dB(A), and 78.1dB(A), respectively. Regarding the measurement distance, 1.2meter difference in measuring location reduces 1.6dB(A) of noise level; the average noise levels at 5.3m and 7.5m from the centerline of outer lane are 72.8dB(A) and 71.2dB(A), respectively. It should be noted that the noise levels are slightly different as a function of vehicle speed and type. However, the overall trends for each case was similar. It was found that the domain frequency bands for ACP and JPCP were 400Hz~2000Hz and 500Hz~2000Hz, respectively. CONCLUSIONS : Based on the analysis with the measured noise date from national highway, it was concluded that the noise level and frequency band vary depending on the various conditions. It was also found that some variables significantly affect the noise level while others do not. With further systematic investigation, the comprehensive noise characteristics on the national highway can be achieved. Using such database, it is possible to develop the fundamental noise reduction technology.