• Title/Summary/Keyword: Highly purified chitosan

Search Result 3, Processing Time 0.016 seconds

Highly purified chitosan reduce blood alcohol concentration, aspartate aminotransferase, and alanine aminotransferase levels in human

  • Chung, Hwan-Suck;Koo, Hyun-Na;Moon, Young-Hoe;Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 2003
  • The purpose of this study was to examine the effect of supplementary highly purified chitosan (HPC) on blood alcohol concentration in healthy human. The human study was performed with two sections. Each section of the study was conducted by two-phase cross-over design with a week wash-out period. All volunteers took HPC in one phase, and took a placebo in the next phase. Blood alcohol concentrations were different between in those taking HPC and in those taking the placebo in the human. And the concentration of serum aspartate aminotransferase (AST, GOT) and alanine aminotransferase (ALT, GPT), the indicator of liver cell damage, was lowered in those taking HPC, compared to those taking the placebo. In conclusion, taking HPC prior to drinking alcohol can somewhat reduce alcohol concentration in human blood and liver cell damage.

Isolation, Purification and Characterization of Chitosanase from Bacillus subtilis CH1

  • Oh, Chul-Hong;Lee, Je-Hee
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Bacillus subtilis strain with highly active chitosanase was isolated from the intestine of Sebastiscus marmoratus (scorpion fish). It was named as Bacillus subtilis CH1 by morphological, biochemical and 165 rRNA gene analysis. The optimal conditions for chitosanase production were investigated. The optimum carbon and nitrogen sources for Bacillus stibtilis CH1 were 2% starch and 1% yeast extract respectively. Unlike other chitosanases, the expression of this chitosanase was not induced or slightly induced with chitosan. The chitosanase secreted into the medium were concentrated with ammonium sulfate precipitation and purified by gel permeation chromatography. The molecular weight of purified chitosanase was 30 kDa. The optimum pH and temperature of purified chitosanase were 5.5 and $60^{\circ}C$ respectively. The purified chitosanase was continuously thermostable at $40^{\circ}C$ and showed stable activity between pH 6.0 and 8.0. Chitosanase activity of Bacillus subtilis CH1 under optimum condition was 4.1 units/ml.

Chitosan Increases the Release of Renal Dipeptidase from Porcine Renal Proximal Tubule Cells

  • Hyun Joong, Yoon;Kim, Young-Ho;Park, Sung-Wook;Lee, Hwanghee-Blaise;Park, Haeng-Soon
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) has been widely studied since it was first purified from porcine kidney brush border membrane. It was reported that RDPase activity in urine samples of acute and chronic renal failure patients decreases. Nitric oxide (NO) is a highly reactive free radical involved in a number of physiological and pathological processes. NO is able to act in a dual mode, leading either to induction of apoptosis or to blunted execution of programmed cell death. NO inhibited the RDPase release from porcine renal proximal tubules, which could be blocked by L-NAME. Chitosan, the linear polymer of D-glucosamine in $\beta$(1\longrightarrow4) linkage, not only reversed the decreased RDPase release by NO but also increased NO production in the proximal tubule cells. The stimulatory effect of NO on RDPase release from proximal tubules in the presence of chitosan must be different from the previously proposed mechanism of RDPase release via NO signaling pathway. Chitosan stimulated the RDPase release in the proximal tubules and increased RDPase activity to 220% and 250% at 0.1% and 1%, respectively. RDPase release was decreased to about 40% in the injured proximal tubules and was recovered in proportion to the increase of chitosan. Chitosan may be useful in recovery of renal function from $HgCl_2$injury.