• Title/Summary/Keyword: Highly performing cathode

Search Result 1, Processing Time 0.015 seconds

Cathode Microstructure Control and Performance Improvement for Low Temperature Solid Oxide Fuel Cells (저온 고체산화물 연료전지용 공기극 미세구조 제어 및 성능개선)

  • Kang, Jung-Koo;Kim, Jin-Soo;Yoon, Sung-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.727-732
    • /
    • 2007
  • In order to fabricate a highly performing cathode for low-temperature type solid oxide fuel cells working at below $700^{\circ}C$, electrode microstructure control and electrode polarization measurement were performed with an electronic conductor, $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and a mixed conductor, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$(LSCF). For both cathode materials, when $Sm_{0.2}Ce_{0.8}O_2$ (SDC) buffer layer was formed between the cathode and yttria-stabilized zirconia (YSZ) electrolyte, interfacial reaction products were effectively prevented at the high temperature of cathode sintering and the electrode polarization was also reduced. Moreover, cathode polarization was greatly reduced by applying the SDC sol-gel coating on the cathode pore surface, which can increase triple phase boundary from the electrolyte interface to the electrode surface. For the LSCF cathode with the SDC buffer layer and modified by the SDC sol-gel coating on the cathode pore surface, the cathode resistance was as low as 0.11 ${\Omega}{\cdot}cm^2$ measured at $700^{\circ}C$ in air atmosphere.