• Title/Summary/Keyword: Highly organic soil

Search Result 225, Processing Time 0.028 seconds

Geochemical Behavior and Pollution of Soils in Gwangju City (광주광역시 토양의 지화학적 거동 특성과 오염)

  • Shin, Sang-Eun;Kim, Joo-Yong;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.415-425
    • /
    • 2005
  • To examine the geochemical behavior and pollution of soils in Gwangju City, an analysis was carried out for pH, on the contents of metals, and organic carbon. Soil samples were taken from environs areas, industrial areas and downtown areas. The major factor controlling the behavior of metallic elements in the soil was chemical weathering of clay mineral in the environs areas, industrialization, and urbanization. Heavy metals including Cu, Pb and Zn were highly enriched for the samples from central part of downtown area. This indicated that the urbanization and the industrialization affected soil pollution. The results show that soil pollution in a metropolitan city which is caused by harmful heavy metals is severest in the center of the city. In consequence, it is inevitable that practical measures should be taken to prevent soil pollution expansion.

PAH로 오염된 토양의 미생물 분해 가속화 연구

  • 이효진;우승한;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.195-198
    • /
    • 2001
  • Bioremediation of hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), is a major environmental concern due to their toxic and carcinogenic properties. Bue to their low solubility in water, the compounds are microbiologically persistent. This work investigates optimal conditions to enhance the biodegradation of phenanthrene in water and soil-slurry systems. Biodegradation tests were performed with three different types of supplements: glucose as a general carbon source, salicylate as an enzyme inducer, and Triton X-100 as a surfactant. The tests indicate that glucose and Triton X-100 were not very effective to increase biodegradation rate, even though the number of microorganisms are highly increased in the case of glucose addition. Salicylate accelerated biodegradation of phenanthrene, but the addition above optimal concentration inhibited microbial growth. Salicylate is considered to be an attractive alternative for the successful bioremediation of PAH-contaminated soil.

  • PDF

Effects of Compost and Rice Straw Application on Growth of Soybean Plant in Newly Reclaimed Upland Soil (신개간지(新開墾地) 토양(土壤)에서 퇴비(堆肥)와 볏짚시용(施用)이 대두생육(大豆生育)에 미치는 영향(影響))

  • Lee, Myong-Gu;Hwang, Kwang-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 1982
  • A field experiment was conducted to compare the effects of compost and rice straw application on the growth of soybean, chemical properties and soil microorganism in newly reclaimed silty clay loamy upland soil. Application rates of the arganic materials were 750 Kg, 1,500 Kg and 3,000 Kg/10a in compost, and 340 Kg, 680 Kg and 1,360 Kg/10a in rice straw. The differences of N.P.K. application rates caused by the two different organic materials were balanced by chemical fertilizers of N.P.K. The results can be summarized as follows; 1. The yield of soybean was increased upon compost application, but no significant difference on yield was observed except luxuriant plant growth upon rice straw application. 2. There was highly possitive correlation between concentration of phosphorous, potassium in soybean plant at 71 days after planting and dry weight of grain vs. stem plus bean chaff of harvest plant in compost applied plots, but no correlation was found in rice straw applied plots. 3. In greneral, the soil water contents in organic material applied plots, expecially in plots of rice straw, were higher than in no organic material plots. However, at wilting point, the soil water content in organic material applied plot was lower compare to no organic material plot. 4. The weight of nodules per soybean plant was heavier notwithstanding the fewer number of soil bacteria and fungi in compost application plots than rice straw application plots.

  • PDF

o-DGT as a Biomimic Surrogate to Assess Phytoaccumulation of Phenanthrene in Contaminated Soils (o-DGT를 생체모사 대표물질로 이용한 오염토양에서 phenanthrene의 식물축적 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.16-25
    • /
    • 2019
  • Anthropogenic polycyclic aromatic hydrocarbons (PAHs) are formed by the incomplete combustion of fuels and industrial waste. PAHs can be widely exposed to the environment (water, soil and groundwater). PAHs are potentially toxic, mutagenic and/or carcinogenic. Fundamental studies such as biota uptake (e.g., earthworm and plant) of PAHs are highly needed. It is necessary to develop alternative ways to evaluate bioavailability of PAHs instead of using living organisms because it is time-consuming, difficult to apply in the field, and also exaction method is tedious and time-consuming. In this study, sorption behaviors of phenanthrene were evaluated to predict the fate of PAHs in soils. Moreover, bioaccumulation of PAHs in an artificially contaminated soil was evaluated using pea plant (Pisum sativum) as a bioindicator. A novel passive sampler, organic-diffusive gradient in thin-film (o-DGT) for PAHs was newly synthesized, tested as a biomimic surrogate and compared with plant accumulation. Sorption partitioning coefficient (KP) and sorption capacity (KF) were in the order of natural soil > loess corresponding to the increase in organic carbon content (foc). Biota-to-soil accumulation factor (BSAF) and DGT-to-soil accumulation factor (DSAF) were evaluated. o-DGT uptake was linearly correlated with pea plant uptake of phenanthrene in contaminated soil (R2=0.863). The Tenax TA based o-DGT as a biomimic surrogate can be used for the prediction of pea plant uptake of phenanthrene in contaminated soil.

Physico-Chemical Properties on the Management groups of Upland Soils in Korea (밭유형(類型)에 따른 토양(土壤)의 이화학적(理化學的) 특성(特性))

  • Rim, Sang-Kyu;Hur, Bong-Koo;Jung, Sug-Jae;Hyeon, Geun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.67-71
    • /
    • 1997
  • To grasp the physico-chemical properties on the management groups of upland soil, the data obtained from the detailed soil survey which conducted from 1964 to 1979 by Agricultural sciences Institute, were analyzed and classified. The clay content in A horizon soil was low in sandy textured and well adapted types and high in heavy clayey type, and that in B horizon was lowest in volcanic ash type and highest in heavy clayey type. High organic matter content was found in the volcanic ash and plateau type. The correlations among soil physico-chemical properties were significant. Especially canon exchange capacity of B horizon soil was highly correlated with the content of available water, clay, silt and organic matter positively.

  • PDF

Contribution of Soil Pysico-chemical Properties to Fruit Quality of 'Campbell Early' Grapes in the Vineyards (포도 '캠벨얼리' 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Choi, In-Myung;Yun, Seok-Kyu;Cho, Jung-Gun;Lim, Tae-Jun;Yun, Hae-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.187-191
    • /
    • 2009
  • 'Campbell Early', a major grape cultivar, occupies more than 70% of cultivated vineyard areas, however, recommendable standard management system of soil environmental conditions has not been developed yet in Korea. The consideration for the correlation between fruit quality and soil condition in the vineyard is required in the efficient management system of soil. This study was carried out to investigate the optimum soil environmental conditions for 'Campbell Early' grape production with high quality. The results from analyses of correlation between them were used to develop soil management guideline for promoting efficiency in grape production. Soil properties were analyzed from 120 vineyards in Hawsung, Sangju, Yeongdong, Gimcheon, Yeongju, and Yeongwol, major grape production regions. Because there is neither coloring disorder nor delayed coloration in grape production of 'Campbell Early', relative contribution of soil hardness and solid phase to fruit quality and fruit weight was analyzed. Among the soil properties, while cation and soil hardness affected sugar content at the level of 39.3% and 36.8%, respectively, saturated hydraulic conductivity, solid phase, and cation exchange capacity (CEC) showed relatively low contribution to sugar content in the vineyard. The sugar content in grapes was influenced more critically by the chemical properties than the physical ones in the soil of vineyards. While soil hardness and solid phase affected grape weight at the level of 27.8% and 26.0%, respectively, phosphate content, organic matter content, and cation showed low contribution to grape weight. Grape guality such as sugar content and grape weight was affected highly by cation and organic matters. Therefore, cation and organic matter content of soil contributed to fruit quality at the level of 33.8% and 15.5%, respectively, in the vineyard.

Effect of Organic Fertilizer Ratios on the Growth of Spiraea × bumalda 'Gold Mound' in the Container Green Wall Systems with Rainwater Utilization (빗물활용 벽면녹화 용기 내 유기질비료 배합비에 따른 노랑조팝나무의 생육 반응)

  • Ju, Jin-Hee;Kim, Hya-Ran;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1417-1423
    • /
    • 2011
  • For evaluating the effect of various organic fertilizer ratios on the Spiraea${\times}$bumalda 'Gold Mound' growth, a container green wall system experiment was conducted in a greenhouse at Konkuk university. The experimental planting grounds were prepared with different organic fertilizer ratios ($A_1L_0$, $A_8L_1$, $A_4L_1$ $A_2L_1$ and $A_1L_1$) and with drought tolerance and an ornamental value Spiraea${\times}$bumalda 'Gold Mound' was planted. The change in soil moisture contents, plant height, number of branches, number of dead leafs, number of leaf, number of shoots, length of node, length of leaf, width of leaf, root-collar caliper, chlorophyll contents and survival rate were investigated from April to Jun 2010. 1. The result of soil moisture contents was analyzed with weight unit in the container green wall system during the dry summer season. The soil moisture contents were significantly enhanced in the container green wall system in increasing order as the amount of fertilizer level increased $A_1L_1$ > $A_2L_1$ > $A_4L_1$ > $A_8L_1$ > $A_1L_0$. 2. Compared to the control treatment (amended soil with 100% + organic fertilizer 0%) application, the highest plant growth was observed in the treatment of $A_2L_1$(amended soil with 67% + organic fertilizer 13%) application. However, the differences between the organic fertilizer ratio treatments of $A_1L_1$, $A_4L_1$, $A_8L_1$, and the $A_1L_0$ organic fertilizer application were mostly not significant. 3. The survival rate increased with the increasing application of organic fertilizer, but in the control treatment (amended soil with 100% + organic fertilizer 0%) application all the plants died. Experimental results from the presented study clearly demonstrated that the organic fertilizer improved the survival rate more than the Spiraea${\times}$bumalda 'Gold Mound' growth at different levels of organic fertilizers. This strain can be utilized as a plant growth application in living wall systems during the dry summer season. Therefore, Spiraea${\times}$bumalda 'Gold Mound' is expected to be a highly valuable shrub for the green wall system if it should be considered in integration with stormwater retention or as a soil conditioner for increasing soil water contents in planting ground.

Heavy Metal Speciation in Soils from the janghang Smelter Area (장항 제련소 지역 토양의 중금속 오염에 대한 환경광물학적 연구)

  • 여상진;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 1997
  • The Janghang smelter is the first lead, zinc and copper smelting facility in Korea which was operated for a half century from 1936 to 1989. The clay minerals and their heavy metal association in the soil profile around the smelter have been studied using XRD, EPMA, SEM-EDS, TEM, EPR and sequential extraction techniques. The soils in A horizon are highly acidic showing pH 4.45. The pH is going up with increasing depth. They have residual water contents of 1.18-1.51 wt%, loss on ignition of 6.32-7.79 wt%, and carbon contents of 0.08-0.88 wt%. Soils consist of quartz, feldspar, muscovite, kaolinite, vermiculite, biotite, chlorite, goethite and hematite in the decreasing abundance. The contents of clay minerals, especially vermiculite and chlorite, decrease with increasing depth. Sequential extraction experiments for the profile samples show that heavy metals (Zn, Cu, Pb, Cd) are highly concentrated in the A horizon of the soil profile as water-extractable (mostly amorphous), MgCl2-extractable (exchangeable in clay minerals), and organic phases. The heavy metal contents decrease with increasing depth. It suggests that the heavy metals are mainly associate with clay minerlas in an exchangeable state. It is also noted that heavy metals are highly concentrated in the manganese and iron oxide phases.

  • PDF

Evaluation of Methane Emissions with Water Regime before the Cultivation Period in Paddy Fields

  • Park, Jun-Hong;Park, Sang-Jo;Kim, Jong-Su;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • Anaerobic decomposition of organic material in flooded rice fields produces methane, which escapes to the atmosphere primarily by transport through the rice plants. The annual amount of $CH_4$ emitted from a given area of rice is a function of the number and duration of crops grown, water regimes before and during cultivation period, and organic and inorganic soil amendments. Soil type, temperature, and rice cultivar also affect $CH_4$ emissions. The field experiment was conducted for three years to develop methane emission factor for water regime before the cultivation period from the rice fields. It was treated with three different water regimes prior to rice cultivation, namely: non-flooded pre-season < 180 days, non-flooded pre-season > 180 days, flooded per-season in which the minimum flooding interval is set to 30 days. Methane emission increased with days after transplanting and soil redox potential (Eh) decreased rapidly after flooding during the rice cultivation. The average methane emission fluxes were $5.47kg\;CH_4\;ha^{-1}day^{-1}$in flooded pre-season > 30 days, 5.04 in non-flooded pre-season < 180 days and 4.62 in non-flooded pre-season > 180. Methane emission flux was highly correlated with soil temperature and soil Eh. Rice yields showed no difference among treatments with water regime before the cultivation period.

Adsorption and Leaching Characteristics of Nonionic Pesticides in Soils of Jeju Island, Korea (제주도 토양 중 비이온계 농약의 흡착 및 용탈 특성)

  • Chun, Si-Bum;Hyun, Ik-Hyun;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.561-575
    • /
    • 2018
  • Agricultural soils around springwaters heavily affected by pesticide run-off and around wells considering the regional characteristics were collected at 24 stations in Jeju Island, and the physicochemical properties and adsorption and leaching characteristics of four nonionic pesticides (diazinon, fenitrothion, alachlor, and metalaxyl) were investigated. The values of the major soil factors affecting the adsorption and leaching of pesticides, namely, soil pH($H_2O$), organic matter content, and cation exchange capacity (CEC), were in the range of 4.64 ~ 8.30, 0.9 ~ 13.1% and 12.7 ~ 31.7 meq/100 g, respectively. The Freundlich constant, $K_F$ value, which gives a measure of the adsorption capacity, decreased in the order of fenitrothion > diazinon > alachlor > metalaxyl, which was identical to their lower water solubility. Among the collected soils, the $K_F$ value was very highly correlated with organic matter content ($r^2=0.800{\sim}0.876$) and CEC ($r^2=0.715{\sim}0.825$) and showed a high correlation with clay content ($r^2=0.473{\sim}0.575$) and soil pH($H_2O$) ($r^2=0.401{\sim}0.452$). The leaching of pesticides in the soil column showed a reverse relationhip with their adsorption in soils, i.e., the pesticides leached more quickly for the soils with lower values of organic matter content and CEC among the soils and for the pesticides with higher water solubility.