• Title/Summary/Keyword: Highly Linear Active Antenna

Search Result 2, Processing Time 0.015 seconds

Design of a Highly Linear Broadband Active Antenna Using a Multi-Stage Amplifier (다중 증폭 회로를 이용한 높은 선형 특성을 갖는 광대역 능동 안테나 설계)

  • Lee, Cheol-Soo;Jung, Geoun-Seok;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1193-1203
    • /
    • 2008
  • An active antenna(AA) can have wider bandwidth and more gain with small antenna size than those of passive antennas. However, AA inherently generates thermal noise and spurious signals from an active device. Moreover, the spurious performance of AA is very important in a highly sensitive receiving system since it is located at the front end of the receiving system. In this study, we developed an AA with $100{\sim}500\;MHz$, having the output P1dB higher than 3 dBm and little spurious signals in real environments. To achieve such performance, we designed an AA with 3-stage amplifier using CD(common drain) FET and 2 BJTs. Its electrical performances were simulated using ADS. The measurement results for typical gain, NF, OIP3, VSWR and P1dB in the required frequency band were 9.7 dBi, 10 dB, 14 dBm, 1.7:1 and 3 dBm respectively. They are in good agreement with simulation results. The unwanted spectrum level of the proposed AA is $10{\sim}30\;dB$ lower than that of the antenna with CS(common source) FET configuration at a west suburban area of Seoul, which shows that the proposed AA can be applicable to a highly sensitive receiving system for detecting unknown weak signals mixed with broadcasting and civilian communication signals.

Design of ISM-band Folded Dipole Active Integrated Antenna (ISM 대역용 접힌 다이폴 능동 집적 안테나의 설계)

  • 이재홍;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1612-1619
    • /
    • 2001
  • This paper examines the design, implementation characteristics of a folded dipole active integrated antenna. Our goal was to minimize the physical size of RF circuit and its insertion loss, and to make the high frequency tuning easier by directly integrating the ISM(Industrial Scientific & Medical) band power amplifier and antenna. Non-linear model has been used for highly accurate simulation of the power amplifier. The maximum power level was found by using the Load pull method before an impedance matching was achieved. It is found that the total power-added efficiency(PAE) including the driving amplifier was 31.5% and that the transmit power was 13.7 dBm. We also found that the proposed scheme with the smaller antenna as compared with the existing dipole antenna has 23.7 dB total gain including the antenna gain. The suppression of the second harmonic signal to the fundamental signal with respect to the fundamental signal was found to be more than 30 dBc.

  • PDF