• Title/Summary/Keyword: Higher-Order Shear Deformation

Search Result 390, Processing Time 0.022 seconds

Improved HSDT accounting for effect of thickness stretching in advanced composite plates

  • Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.61-73
    • /
    • 2018
  • In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently, the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use more number of variables.

A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

  • Fellah, M.;Draiche, Kada;Houar, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Saeed, Tareq;Alhodaly, Mohammed Sh.;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.335-345
    • /
    • 2019
  • In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis

  • Alijani, Meysam;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.585-610
    • /
    • 2018
  • In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Flexoelectric effect on buckling and vibration behaviors of piezoelectric nano-plates using a new deformation plate theory

  • Bui Van Tuyen;Du Dinh Nguyen;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.709-725
    • /
    • 2023
  • This paper uses a new type of deformation theory to establish the free vibration and static buckling equations of nanoplates resting on two-parameter elastic foundations, in which the flexoelectric effect is taken into account. The proposed approach used in this work is not only simpler than other higher-order shear deformation theories but also does not need any shear correction coefficients to describe exactly the mechanical responses of structures. The reliability of the theory is verified by comparing the numerical results of this work with those of analytical solutions. The results show that the flexoelectric effect significantly changes the natural frequency and the critical buckling load of the nanoplate compared with the case of neglecting this effect, especially when the plate thickness changes and with some different boundary conditions. These are new results that have not been mentioned in any publications but are meaningful in engineering practice.

An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams

  • Sun, Kai Q.;Zhang, Nan;Liu, Xiao;Tao, Yan X.
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2021
  • An equivalent single-layer theory (EST) is put forward for analyzing free vibrations of steel-concrete composite beams (SCCB) based on a higher-order beam theory. In the EST, the effect of partial interaction between sub-beams and the transverse shear deformation are taken into account. After using the interlaminar shear force continuity condition and the shear stress free conditions at the top and bottom surface, the displacement function of the EST does not contain the first derivatives of transverse displacement. Therefore, the C0 interpolation functions are just demanded during its finite element implementation. Finally, the EST is validated by comparing the results of two simply-supported steel-concrete composite beams which are tested in laboratory and calculated by ANSYS software. Then, the influencing factors for free vibrations of SCCB are analyzed, such as, different boundary conditions, depth to span ratio, high-order shear terms, and interfacial shear connector stiffness.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.