• Title/Summary/Keyword: Higher(gross) heating value

Search Result 3, Processing Time 0.016 seconds

The Heat Management of PEM Fuel Cell Stack (운전 조건에 따른 PEMFC 스택 열 관리)

  • Son, Ik-Jae;Lee, Jong-Hyun;Nam, Gi-Young;Ko, Jae-Jun;Ahn, Byung-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • PEM fuel cell produces electric power, water and heat by the electrochemical reaction of hydrogen and oxygen. The heating value is dependent on the molar enthalpy of vaporization of product water and the performance loss. In this paper, the heating value of fuel cell stack has been studied under various stack operating temperatures to achieve more efficient heat management. A technology using the molar enthalpy of vaporization of product water is suggested to reduce heat-up time during start-up of a fuel cell vehicle.

The Fuelization Study on the Oil Palm Frond Through Torrefaction (Oil Palm Frond의 반탄화를 통한 연료화 연구)

  • Lee, Myung Suk;Jeong, Gwangsik;Jung, Sang-Jin;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.465-469
    • /
    • 2013
  • In this study, we investigated the feasibility of torrefied OPF (oil palm fronds) as the fuel. The torrefaction was performed at 200, 250, 300 and $350^{\circ}C$ during 1 and 2 hours, respectively. As raising the torrefaction temperature and increasing the processing time, the GHV (gross heating value) of torrefied OPFs was increased. Moreover, we found that the torrefaction temperature is more important factor than the processing time. However, the proper torrefaction temperature was asked because the higher torrefaction temperature leaded to the lower torrefied OPF yield. TGA (thermo-gravimetric analysis) data released that the torrefaction at $250^{\circ}C$ could significantly decompose the hemicellulose and the almost cellulose was decomposed at $300^{\circ}C$. In addition, the grindability of biomass was improved after torrefaction, so that it can reduce energy consumption in comminution.

A Study on Fuel Characteristics of Mixtures Using Torrefied Wood Powder and Waste Activated Carbon (반탄화 목분과 폐활성탄 혼합물의 복합연료활용을 위한 연료적 특성에 관한 연구)

  • Lee, Chang Goo;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.135-143
    • /
    • 2015
  • This study evaluated fuel properties of composite materials which were prepared by mixing a waste activated carbon from the used purifier filter with torrefied wood powder. Wood species of the raw material of torrefied wood powder are oak wood (Quercus serrata Thunb. ex Murray) and pine wood (Pinus densiflora Siebold & Zucc). And the treatment conditions used for this study were 300 s, 450 s, and 600 s at $200^{\circ}C$ for the wood roaster. Also, the mixing ratios are 5 : 95, 10 : 90, 15 : 85, 20 : 80, 40 : 60, 60 : 40 and 80 : 20 (waste activated carbon : torrefied wood powder). The fuel properties such as highly heating value (HHV), elementary analysis and ash content were evaluated. The results obtained are followings; 1. Despite the same treatment condition of wood roasting, pine wood has higher carbon contents than oak wood. Therefore, pine wood indicated the optimum carbonization at low temperature and short treatment times. 2. The gross calorific value and ash content increased as the mixing ratio of waste activated carbon increased. 3. Mixtures of the waste activated carbon and torrefied wood powder showed greater gross calorific value than those of the mixtures of waste activated carbon and the untreated wood powder. Also, the pine wood resulted in higher heating value that thaose of the oak wood. 4. When composite fuels that were composed waste activate carbon and wood powder are used, higher temperature conditions are required because the combustion is incomplete at $800^{\circ}C$ and 4 hours. 5. The increasing rate of the gross calorific value of mixtures of waste activated carbon and untreated wood powder is higher than does the mixtures of waste activated carbon and torrefied wood powder. Also, this phenomenon is more obvious for pine woods. Therefore, an optimal mixing ratio of waste activated carbon was determined to be between 5% and 10% (wt%). Also, this condition satisfied the requirement of the No.1 grade of wood pellet.