Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.10
/
pp.1331-1340
/
2020
Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.
Lee, Sung-Jae;Kim, Gil Won;Jeong, Won-Ok;Kang, Won-Seok;Lee, Eun-Jai
Journal of Korean Society of Forest Science
/
v.110
no.1
/
pp.64-71
/
2021
Recently, climate change has gradually accelerated the occurrence of landslides. Among the various effects caused by landslides,debris flow is recognized as particularly threatening because of its high speed and propagating distance. In this study, the impacts of various factors were analyzed using quantification theory(I) for the prediction of debris flow hazard soil volume in Seoraksan National Park, Korea. According to the range using the stepwise regression analysis, the order of impact factors was as follows: vertical slope (0.9676), cross slope (0.6876), altitude (0.2356), slope gradient (0.1590), and aspect (0.1364). The extent of the normalized score using the five-factor categories was 0 to 2.1864, with the median score being 1.0932. The prediction criteria for debris flow occurrence based on the normalized score were divided into four grades: class I, >1.6399; class II, 1.0932-1.6398; class III, 0.5466-1.0931; and class IV, <0.5465. Predictions of debris flow occurrence appeared to be relatively accurate (86.3%) for classes I and II. Therefore, the prediction criteria for debris flow will be useful for judging the dangerousness of slopes.
Exposure to hazardous substances occurs through multiple pathways. Aggregated risk assessment, which includes all potential exposure pathways to a single toxicant, is necessary to prevent exposure to harmful substances. We aimed to estimate cadmium and lead exposure through various media, such as food, water, air, smoking, cosmetics, and female hygiene products. This study covered 10,733 subjects from the Seventh Korea National Health and Nutrition Examination Survey(2016, 2017). Dietary exposure was estimated using 24-hour recall data. For water and inhalational exposure, regional variations were considered. Water was classified as tap, bottled, and public water. Inhalational exposure was estimated using the '2014 Time Use Survey' based on daily lifestyle and social status. The frequency and volume of cosmetic usage were randomly approximated by sex and age. Post-menarcheal and premenopausal women were assumed to use feminine hygiene products. Non-carcinogenic aggregated risks were estimated using the Aggregate Risk Index from EPAs and the Total Exposure Hazard Index from Korean government guidelines. For carcinogenic risk assessment, excessive cancer risk was estimated. Ingestion, especially food, was the major route for both cadmium and lead exposure. Smoking was also associated with high cadmium exposure. Exposure to lead from cosmetics was remarkable but not critical. In aggregate risk assessments, median cadmium and lead exposure did not exceed the reference value. Sex, age, smoking status, and income affected exposure levels, unlike to regional variations.
Detect and avoid (DAA) system, which is essential for the operation of UAS, detects intruding aircraft and offers the ranges of turn and climb/descent maneuver that are required to avoid the intruder. This paper uses detect and avoid alerting logic for unmanned systems (DAIDALUS) developed at NASA as a DAA algorithm. Since DAIDALUS offers ranges of avoidance maneuvers, the actual avoidance maneuver must be decided by the UAS pilot as well as the timing and method of returning to the original route. It can be readily used in real-time human-in-the-loop (HiTL) simulations where a human pilot is making the decision, but a pilot decision model is required in fast-time simulations that proceed without human pilot intervention. This paper proposes a pilot decision model that maneuvers the aircraft based on the DAIDALUS avoidance maneuver range. A series of tests were conducted using test vectors from radio technical commission for aeronautics (RTCA) minimum operational performance standards (MOPS). The alert levels differed by the types of encounters, but loss of well clear (LoWC) was avoided. This model will be useful in fast-time simulation of high-volume traffic involving UAS.
Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.
Azad, Muhammad Muzammil;Kim, Dohoon;Khalid, Salman;Kim, Heung Soo
Journal of the Computational Structural Engineering Institute of Korea
/
v.34
no.6
/
pp.409-415
/
2021
Medical waste management is becoming increasingly important, specifically in light of the current COVID-19 pandemic, as hospitals, clinics, quarantine centers, and medical research institutes are generating tons of medical waste every day. Previously, a traditional incineration process was utilized for managing medical waste, but the lack of landfill sites, and accompanying environmental concerns endanger public health. Consequently, an innovative sterilization shredding system was developed to resolve this problem. In this research, we focused on the design and numerical analysis of a shredding system for hazardous and infectious medical waste, to establish its operational performance. The shredding machine's components were modeled in a CAD application, and finite element analysis (FEA) was conducted using ABAQUS software. Static, fatigue, and dynamic loading conditions were used to analyze the structural stability of the cutting blade. The blade geometry proved to be effective based on the cutting force applied to shred medical waste. The dynamic stability of the structure was verified using modal analysis. Furthermore, an S-N curve was generated using a high cycle fatigue study, to predict the expected life of the cutting blade. Resultantly, an appropriate shredder system was devised to link with a sterilization unit, which could be beneficial in reducing the volume of medical waste and disposal time, thereof, thus eliminating environmental issues, and potential health hazards.
Petroleum is the most consumed energy source in Korea with a usage rate of 38.7% among the available primary energy sources. The price of liquid petroleum products in Korea includes taxes such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference from that of the normal product and its tax-free nature. Generally, the illegal petroleum product is produced by mixing liquid petroleum with other similar petroleum alternatives. The two kinds of gasoline, common gasoline and premium gasoline, are being distributed in Korea. The premium gasoline is often adulterated with cheaper common gasoline that lowers the octane number of gasoline. It is possible to distinguish them with their color difference, green and yellow for different grade gasoline. However, when small volume of common gasoline is added to premium gasoline, it is difficult to determine whether premium gasoline contained common grade or not. In this study, we inspect gasoline, which is illegally produced by mixing common gasoline to premium gasoline. When the ratio of mixing common gasoline is increased, premium gasoline shows decreasing absorbance at 600 nm and 650 nm under UV-Vis spectrometer. Moreover, the detected intensity (mV·s) of green dye in high performance liquid chromatography (HPLC) was decreased by common gasoline under 0.99 correlation value. The more the common gasoline is mixed, the more olefin and naphthene are detected by gas chromatography. In addition, trimethyl pentane as octane improver, paraffin and toluene are decreased by common gasoline mixing. The findings of this study suggests that illegal petroleum can be identified by analysis of components and simulated samples.
Journal of the Korea Organic Resources Recycling Association
/
v.29
no.4
/
pp.87-97
/
2021
This study was conducted to prepare an incentive system (proposal) for the activation of waste-to-energy. Weights for each type of energy use were prepared by conducting prior research and economic analysis. In addition, the waste-to-energy incentive (proposal) was calculated in consideration of energy efficiency for each type of energy use. As a result of economic analysis of 11 biogasification facilities, the B/C value was found to be very diverse, ranging from 0.16 to 1.69. In terms of benefits, imports of waste treatment import fees were very high at 68.4 to 99.3% of the total, and four facilities with a surplus (+) or higher in the management balance. In order to convert energy consumption into units of sales volume, 0.58 Nm3/KW for power generation, 0.17 Nm3/kg for steam, and 1.00 Nm3/Nm3 for external supply were calculated using the 'scale factor'. The 'weight factor' was calculated as 0.249 for power generation, 0.656 for steam, and 0.806 for external supply, respectively, by use type.
The fine-dust season management system refers to the policy of implementing enhanced reduction measures in transportation, power, business and living sectors in winter, when fine dust levels are high. The fine dust season management system is a regulatory policy that causes social costs and transfers to various economic players. Equity is an important issue for the cost burden. Therefore, in this study, the cost of each power generator was analyzed using the coal power generation reduction amount of each power generator to verify that the cost of the power sector is evenly distributed. In particular, the effect of the fine dust season management system on coal power generation of power generators was analyzed by applying a synthetic control method that can identify the time-variable effect of the policy. It was confirmed that the fine dust season management system reduced volume of fuel and power generation in coal power plants, resulting in an increase in the cost of the power generation sector, even considering the effect of some power demand due to the COVID-19 crisis. However, it could be seen that these costs were not distributed equally among the generators, and that they were more costly to the specific generators.Social costs incurred by fine dust season management need to be improved so that stakeholders are equally burdened.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.