• Title/Summary/Keyword: High-throughput optimization

Search Result 59, Processing Time 0.026 seconds

A Wireless MAC Scheduler based on Video Traces for One-to-one Video-on-demand Services in CDMA2000 1xEV-DO (CDMA2000 1xEV-DO 이동통신 망에서 일대일 주문형 비디오 서비스를 위한 비디오 트레이스 기반 무선 MAC 스케줄러)

  • Pyun, Ki-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.351-359
    • /
    • 2009
  • A wireless MAC scheduler for CDMA2000 IxEV-DO that provides a high level of quality-of-service(QoS) for video-on-demand(VOD) applications while achieving a reasonable level of system throughput is proposed, The proposed scheduler that exists in the MAC layer utilizes the video data information that resides in the application layer such that it improves the QoS for VOD applications. We show by simulations that our approach is better than the previous scheduler which is also based on video traces for VBR videos that have high variability between video frames.

Acoustic technology-assisted rapid proteolysis for high-throughput proteome analysis (대량 발굴 프로테옴 분석을 위한 어쿠스틱 기술 기반 고속 단백질 절편화)

  • Kim, Bo-Ra;Huyen, Trang Tran;Han, Na-Young;Park, Jong-Moon;Yu, Ung-Sik;Lee, Hoo-Keun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.510-518
    • /
    • 2011
  • Recent developments and improvements of multiple technological elements including mass spectrometry (MS) instrument, multi-dimensional chromatographic separation, and software tools processing MS data resulted in benefits of large scale proteomics analysis. However, its throughput is limited by the speed and reproducibility of the protein digestion process. In this study, we demonstrated a new method for rapid proteolytic digestion of proteins using acoustic technology. Tryptic digests of BSA prepared at various conditions by super acoustic for optimization time and intensity were analyzed by LC-MS/MS showed higher sequence coverage in compared with traditional 16 hrs digestion method. The method was applied successfully for complex proteins of a breast cancer cells at 30 min of digestion at intensity 2. This new application reduces time-consuming of sample preparation with better efficiency, even with large amount of proteins, and increases high-throughput process in sample preparation state.

The Study on the Design and Optimization of Storage for the Recording of High Speed Astronomical Data (초고속 관측 데이터 수신 및 저장을 위한 기록 시스템 설계 및 성능 최적화 연구)

  • Song, Min-Gyu;Kang, Yong-Woo;Kim, Hyo-Ryoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.75-84
    • /
    • 2017
  • It becomes more and more more important for the storage that supports high speed recording and stable access from network environment. As one field of basic science which produces massive astronomical data, VLBI(: Very Long Baseline Interferometer) is now demanding more data writing performance and which is directly related to astronomical observation with high resolution and sensitivity. But most of existing storage are cloud model based for the high throughput of general IT, finance, and administrative service, and therefore it not the best choice for recording of big stream data. Therefore, in this study, we design storage system optimized for high performance of I/O and concurrency. To solve this problem, we implement packet read and writing module through the use of libpcap and pf_ring API on the multi core CPU environment, and build a scalable storage based on software RAID(: Redundant Array of Inexpensive Disks) for the efficient process of incoming data from external network.

Identifying Responsive Functional Modules from Protein-Protein Interaction Network

  • Wu, Zikai;Zhao, Xingming;Chen, Luonan
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.271-277
    • /
    • 2009
  • Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.

Geolocation Spectrum Database Assisted Optimal Power Allocation: Device-to-Device Communications in TV White Space

  • Xue, Zhen;Shen, Liang;Ding, Guoru;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4835-4855
    • /
    • 2015
  • TV white space (TVWS) is showing promise to become the first widespread practical application of cognitive technology. In fact, regulators worldwide are beginning to allow access to the TV band for secondary users, on the provision that they access the geolocation database. Device-to-device (D2D) can improve the spectrum efficiency, but large-scale D2D communications that underlie TVWS may generate undesirable interference to TV receivers and cause severe mutual interference. In this paper, we use an established geolocation database to investigate the power allocation problem, in order to maximize the total sum throughput of D2D links in TVWS while guaranteeing the quality-of-service (QoS) requirement for both D2D links and TV receivers. Firstly, we formulate an optimization problem based on the system model, which is nonconvex and intractable. Secondly, we use an effective approach to convert the original problem into a series of convex problems and we solve these problems using interior point methods that have polynomial computational complexity. Additionally, we propose an iterative algorithm based on the barrier method to locate the optimal solution. Simulation results show that the proposed algorithm has strong performance with high approximation accuracy for both small and large dimensional problems, and it is superior to both the active set algorithm and genetic algorithm.

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions (최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상)

  • Z-Hun Kim;Sun Woo Hong;Jinu Kim;Byungrak Son;Mi-Kyung Kim;Yong Hwan Kim;Jin Hyun Seol;Su-Hwan Cheon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

Engineered microdevices for single cell immunological assay

  • Choi, Jong-Hoon
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.1.1-1.8
    • /
    • 2010
  • Microdevices have been used as effective experimental tools for the rapid and multiplexed analysis of individual cells in single-cell assays. Technological advances for miniaturizing such systems and the optimization of delicate controls in micron-sized space homing cells have motivated many researchers from diverse fields (e.g., cancer research, stem cell research, therapeutic agent development, etc.) to employ microtools in their scientific research. Microtools allow high-throughput, multiplexed analysis of single cells, and they are not limited by the lack of large samples. These characteristics may significantly benefit the study of immune cells, where the number of cells available for testing is usually limited. In this review, I present an overview of several microtools that are currently available for single-cell analyses in two popular formats: microarrays and microfluidic microdevices. Then, I discuss the potential to study human immunology on the single-cell level, and I highlight several recent examples of immunoassays performed with single-cell microdevice assays. Finally, I discuss the outlook for the development of optimized assay platforms to study human immune cells. The development and application of microdevices for studies on single immune cells presents novel opportunities for the qualitative and quantitative characterization of immune cells and may lead to a comprehensive understanding of fundamental aspects of human immunology.

A Study of Fronthaul Networks in CRANs - Requirements and Recent Advancements

  • Waqar, Muhammad;Kim, Ajung;Cho, Peter K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4618-4639
    • /
    • 2018
  • One of the most innovative paradigms for the next-generation of wireless cellular networks is the cloud-radio access networks (C-RANs). In C-RANs, base station functions are distributed between the remote radio heads (RHHs) and base band unit (BBU) pool, and a communication link is defined between them which is referred as the fronthaul. This leveraging link is expected to reduce the CAPEX (capital expenditure) and OPEX (operating expense) of envisioned cellular architectures as well as improves the spectral and energy efficiencies, provides the high scalability, and efficient mobility management capabilities. The fronthaul link carries the baseband signals between the RRHs and BBU pool using the digital radio over fiber (RoF) based common public radio interface (CPRI). CPRI based optical links imposed stringent synchronization, latency and throughput requirements on the fronthaul. As a result, fronthaul becomes a hinder in commercial deployments of C-RANs and is seen as one of a major bottleneck for backbone networks. The optimization of fronthaul is still a challenging issue and requires further exploration at industrial and academic levels. This paper comprehensively summarized the current challenges and requirements of fronthaul networks, and discusses the recently proposed system architectures, virtualization techniques, key transport technologies and compression schemes to carry the time-sensitive traffic in fronthaul networks.

A study on the process optimization of injection molding for replicability enhancement of micro channel (미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구)

  • Go, Young-Bae;Kim, Jong-Sun;Yu, Jae-Won;Min, In-Gi;Kim, Jong-Duck;Yoon, Kyung-Hwan;Hwang, Cheul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

Optimization of In-vivo Monitoring Program for Radiation Emergency Response

  • Ha, Wi-Ho;Kim, Jong Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.333-338
    • /
    • 2016
  • Background: In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. Materials and Methods: In this study, minimum detectable doses (MDDs) for $^{134}Cs$, $^{137}Cs$, and $^{131}I$ were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detect-able level was determined to set committed effective dose of 0.1 mSv for emergency response. Results and Discussion: We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for $^{134}Cs$ and $^{137}Cs$, and 100 Bq for $^{131}I$ were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. Conclusion: In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.