• Title/Summary/Keyword: High-throughput nucleotide

Search Result 75, Processing Time 0.024 seconds

New Lung Cancer Panel for High-Throughput Targeted Resequencing

  • Kim, Eun-Hye;Lee, Sunghoon;Park, Jongsun;Lee, Kyusang;Bhak, Jong;Kim, Byung Chul
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.50-57
    • /
    • 2014
  • We present a new next-generation sequencing-based method to identify somatic mutations of lung cancer. It is a comprehensive mutation profiling protocol to detect somatic mutations in 30 genes found frequently in lung adenocarcinoma. The total length of the target regions is 107 kb, and a capture assay was designed to cover 99% of it. This method exhibited about 97% mean coverage at $30{\times}$ sequencing depth and 42% average specificity when sequencing of more than 3.25 Gb was carried out for the normal sample. We discovered 513 variations from targeted exome sequencing of lung cancer cells, which is 3.9-fold higher than in the normal sample. The variations in cancer cells included previously reported somatic mutations in the COSMIC database, such as variations in TP53, KRAS, and STK11 of sample H-23 and in EGFR of sample H-1650, especially with more than $1,000{\times}$ coverage. Among the somatic mutations, up to 91% of single nucleotide polymorphisms from the two cancer samples were validated by DNA microarray-based genotyping. Our results demonstrated the feasibility of high-throughput mutation profiling with lung adenocarcinoma samples, and the profiling method can be used as a robust and effective protocol for somatic variant screening.

LGMD2E with a novel nonsense variant in SGCB gene: a case of LGMD2E with a novel variant

  • La, Yun Kyung;Oh, Eun Kyoung;Lyou, Hyun Ji;Hong, Ji Man;Choi, Young-Chul
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.1
    • /
    • pp.29-32
    • /
    • 2020
  • Sarcoglycanopathies are a rare group of autosomal recessive limb-girdle muscular dystrophies (LGMDs) caused by genetic variants in α-, β-, γ-, or δ-sarcoglycan that maintain membrane integrity and contribute to molecular signal processing. High-throughput nucleotide sequencing was performed in patients with slowly progressive proximal muscle weakness from early childhood with respiratory involvement, which detected a novel homozygous nonsense variant (c.601C>T;p.Gln201Ter) in SGCB. This report informs about the clinical characteristics of LGMD2E (type-2E LGMD) in Korea and provides genetic confirmation of the disease.

Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies

  • Yeh, Hsin-Sung;Zhang, Wei;Yong, Jeongsik
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.201-207
    • /
    • 2017
  • Alternations in usage of polyadenylation sites during transcription termination yield transcript isoforms from a gene. Recent findings of transcriptome-wide alternative polyadenylation (APA) as a molecular response to changes in biology position APA not only as a molecular event of early transcriptional termination but also as a cellular regulatory step affecting various biological pathways. With the development of high-throughput profiling technologies at a single nucleotide level and their applications targeted to the 3'-end of mRNAs, dynamics in the landscape of mRNA 3'-end is measureable at a global scale. In this review, methods and technologies that have been adopted to study APA events are discussed. In addition, various bioinformatics algorithms for APA isoform analysis using publicly available RNA-seq datasets are introduced.

Advantages of the single nucleotide polymorphism-based noninvasive prenatal test

  • Kim, Kunwoo
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.66-71
    • /
    • 2015
  • Down syndrome screening with cell-free DNA (cfDNA) in the maternal plasma has recently received much attention in the prenatal diagnostic field. Indeed, a large amount of evidence has already accumulated to show that screening tests with cfDNA are more sensitive and specific than conventional maternal serum and/or ultrasound screening. Globally, more than 1,000,000 of these noninvasive prenatal tests (NIPTs) have been performed to date. There are several different methods for NIPTs that are currently commercially available, including shotgun massively parallel sequencing, targeted massively parallel sequencing, and single nucleotide polymorphism (SNP)-based methods. All of these methods have their own advantages and disadvantages. In this review, I will focus specifically on the SNP-based NIPT.

Diagnostic approach for genetic causes of intellectual disability

  • Yim, Shin-Young
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • Intellectual disability (ID) is the most common disability among people under the age of 20 years. In the absence of obvious non-genetic causes of ID, the majority of cases of severe ID are thought to have a genetic cause. The advent of technologies such as array comparative genomic hybridization, single nucleotide polymorphism genotyping arrays, and massively parallel sequencing has shown that de novo copy number variations and single nucleotide variations affecting coding regions are major causes of severe ID. This article reviews the genetic causes of ID along with diagnostic approaches for this disability.

SNP Detection of Arraye-type DNA Chip using Electrochemical Method (전기화학적 방법에 의한 신규 바이오칩의 SNP 검출)

  • 최용성;권영수;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.410-414
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

SNP Detection Using Indicator-free DNA Chip (비수식화 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.410-411
    • /
    • 2006
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on. the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Detection of SNP Using Microelectrode Array Biochip (마이크로전극어레이형 바이오칩을 이용한 SNP의 검출)

  • Choi, Yong-Sung;Kwon, Young-Soo;Paek, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.845-848
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Bioinformatics for the Korean Functional Genomics Project

  • Kim, Sang-Soo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.45-52
    • /
    • 2000
  • Genomic approach produces massive amount of data within a short time period, New high-throughput automatic sequencers can generate over a million nucleotide sequence information overnight. A typical DNA chip experiment produces tens of thousands expression information, not to mention the tens of megabyte image files, These data must be handled automatically by computer and stored in electronic database, Thus there is a need for systematic approach of data collection, processing, and analysis. DNA sequence information is translated into amino acid sequence and is analyzed for key motif related to its biological and/or biochemical function. Functional genomics will play a significant role in identifying novel drug targets and diagnostic markers for serious diseases. As an enabling technology for functional genomics, bioinformatics is in great need worldwide, In Korea, a new functional genomics project has been recently launched and it focuses on identi☞ing genes associated with cancers prevalent in Korea, namely gastric and hepatic cancers, This involves gene discovery by high throughput sequencing of cancer cDNA libraries, gene expression profiling by DNA microarray and proteomics, and SNP profiling in Korea patient population, Our bioinformatics team will support all these activities by collecting, processing and analyzing these data.

  • PDF

High Throughput Genotyping for Genomic Cohort Study (유전체 코호트 연구를 위한 대용량 염기서열 분석)

  • Park, Woong-Yang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.102-107
    • /
    • 2007
  • Human Genome Project (HGP) could unveil the secrets of human being by a long script of genetic codes, which enabled us to get access to mine the cause of diseases more efficiently. Two wheels for HGP, bioinformatics and high throughput technology are essential techniques for the genomic medicine. While microarray platforms are still evolving, we can screen more than 500,000 genotypes at once. Even we can sequence the whole genome of an organism within a day. Because the future medicne will focus on the genetic susceptibility of individuals, we need to find genetic variations of each person by efficient genotyping methods.